Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
B=\(\dfrac{1}{\left|x-2\right|+3}\)
do \(\left|x-2\right|\ge0\forall x\)
=> \(\left|x-2\right|+3\ge3\)
=> \(\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
=> B \(\le\dfrac{1}{3}\)
GTLN của B =\(\dfrac{1}{3}\)
khi x-2=0
=> x=2
vậy GTLN của A=\(\dfrac{1}{3}\) khi x=2
vì \(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .
vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1
vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1
b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3
Bài 3:
\(A=\dfrac{-5}{4}\cdot\dfrac{2}{5}x^2y\cdot x^2\cdot x^3y^4=\dfrac{-1}{2}x^7y^5\)
bậc là 12
Hệ số là -1/2
\(B=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot x^5y^4\cdot xy^2\cdot x^2y^5=\dfrac{2}{3}x^8y^{11}\)
Bậc là 19
Hệ số là 2/3
c)C=\(\dfrac{x^2+8}{x^2+2}=\dfrac{\left(x^2+2\right)+6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để C đạt GTLN thì \(\dfrac{6}{x^2+2}\) đạt GTNN
\(x^2\ge0\Rightarrow x^2+2\ge2\)
Max C=4 khi x=0
a)A= 5-3.\(\left(2x-1\right)^2\)
\(\left(2x-1\right)^2\)\(\ge0\) nên 3.\(\left(2x-1\right)^2\)\(\ge0\)
Max A=5 khi x=\(\dfrac{1}{2}\)
b) Để B=\(\dfrac{1}{2.\left(x-1\right)^2+3}\)đạt GTLN thì \(2.\left(x-1\right)^2+3\) đạt GTNN
\(\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2+3\ge3\)
Max B=\(\dfrac{1}{3}\)khi x=1
câu c thiếu đề phải ko bạn
\(A=\left(x+\dfrac{2}{3}\right)^2+\dfrac{1}{2}\)
\(\left(x+\dfrac{2}{3}\right)^2\ge0\forall x\in R\)
\(A=\left(x+\dfrac{2}{3}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra khi:
\(\left(x+\dfrac{2}{3}\right)^2=0\Rightarrow x=-\dfrac{2}{3}\)
\(B=\dfrac{2}{\left(x-\dfrac{1}{2}\right)^2+2}\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\left(x-\dfrac{1}{2}\right)^2+2\ge2\)
\(B=\dfrac{2}{\left(x-\dfrac{1}{2}\right)^2+2}\le1\)
Dấu "=" xảy ra khi:
\(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)