K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Rightarrow x=\sqrt[5]{3}\)

15 tháng 5 2019

Kĩ thuật cô si ngược ý

4 tháng 1 2020

\(\Leftrightarrow Q=\frac{\left(x+\frac{y}{2}+\frac{y}{2}\right)^3}{xy^2}\)

Áp dụng BĐT Cô-si cho 3 số dương:

\(x+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{xy^2}{4}}\)

\(\Rightarrow\left(x+\frac{y}{2}+\frac{y}{2}\right)^3\ge3.\frac{xy^2}{4}\)

\(\Rightarrow Q\ge\frac{3.\frac{xy^2}{4}}{xy^2}=\frac{3}{4}\)

\("="\Leftrightarrow x=\frac{y}{2}\Leftrightarrow y=2x\)

NV
20 tháng 10 2019

Đặt \(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\) \(\Rightarrow t^2=\frac{x^2}{y^2}+\frac{x^2}{y^2}+2\)

\(\Rightarrow A=f\left(t\right)=3\left(t^2-2\right)-8t+10=3t^2-8t+4\)

Xét hàm \(f\left(t\right)\) trên \([2;+\infty)\)

\(a=3>0\) ; \(-\frac{b}{2a}=\frac{8}{6}=\frac{4}{3}< 2\)

\(\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow\min\limits_{[2;+\infty)}f\left(t\right)=f\left(2\right)=0\)

20 tháng 10 2019

Đặt \(\frac{x}{y}=t\)

Ta có: \(A=3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)+10\)

Ta sẽ chứng minh \(A\ge0\)

\(3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)\ge-10\)

\(\Leftrightarrow3t^2-8t+5+\frac{3}{t^2}-\frac{8}{t}+5\ge0\)

\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{3}{t}-5\right)\left(\frac{1}{t}-1\right)\ge0\)

\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{5t-3}{t}\right)\left(\frac{t-1}{t}\right)\ge0\)

\(\Leftrightarrow\left(t-1\right)\left(3t-5+\frac{5t-3}{t^2}\right)\ge0\)

\(\Leftrightarrow\frac{\left(t-1\right)^2\left(3t^2-2t+3\right)}{t^2}\ge0\) (đúng)

Đẳng thức xảy ra khi t = 1 hay x = y

Do đó \(A\ge0\) hay Min A = 0 <=> x = y

P/s: Em ko chắc

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

19 tháng 8 2020

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

17 tháng 12 2016

1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)

Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:

\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)

\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)

\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)

Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)

Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm

 

 

17 tháng 12 2016

3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)

\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

Dấu '=' xảy ra ↔ a = b

Áp dụng BĐT trên, ta có:

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng vế theo vế ba BĐT trên ta được:

\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)

Vậy GTLN của P là 3/4 khi x = y = z = 1/3

5 tháng 2 2020

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

Cộng theo từng vế 

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)

Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số :

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

5 tháng 2 2020

Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)

=> \(x+y+z\ge1\)

Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = y = z =1/3

Vậy min A = 1/2 <=> x = y = z = 1/3