K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

\(5x^2+2y^2-4xy+20x-8y\)

\(=\left(4x^2-4xy+y^2\right)+\left(x^2+20x+100\right)+y^2-8y+16-116\)

\(=\left(2x-y\right)^2+\left(x+10\right)^2+\left(y-4\right)^2-116\ge-116\)

GTNN của biểu thức = -116

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x+10=0\\y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-y=0\\x=-10\\y=4\end{cases}}}\)( Vô lí )

=> Không tìm được giá trị nào của x để biểu thức có giá trị nhỏ nhất .

12 tháng 12 2017

P=4x2+4xy+y2+x2-4x+4+y2+8y+16+5

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5

Ta nhận thấy: \(\hept{\begin{cases}\left(2x+y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall y\end{cases}}\)

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5 \(\ge\)5  Với mọi x, y

=> GTNN của P là Pmin = 5

Đạt được khi: 

\(\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(x-2\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2&y=-4&\end{cases}}\)

24 tháng 8 2020

Bài làm:

Ta có: \(4x^2+2y^2+4xy-4x-8y+15\)

\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+y^2-6y+9+5\)

\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y-3\right)^2+5\)

\(=\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x+y-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

Vậy \(Min=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

24 tháng 8 2020

4x2 + 2y2 + 4xy - 4x - 8y + 15

= [ ( 4x2 + 4xy + y2 ) - 2( 2x + y ) + 1 ] + ( y2 - 6y + 9 ) + 5 

= ( 2x + y - 1 )2 + ( y - 3 )2 + 5

\(\hept{\begin{cases}\left(2x+y-1\right)^2\ge0\forall x,y\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(2x+y-1\right)^2+\left(y-3\right)^2+5\ge5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y-1=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}\)

Vậy GTNN của biểu thức = 5 <=> x = -1 ; y = 3

16 tháng 12 2019

\(A=5x^2+2y^2-4xy-8x-4y+2031\)

\(\Rightarrow5A=25x^2+10y^2-20xy-32x-16y+10155\)

\(=\left(25x^2-20xy+4y^2\right)+6\left(y^2-2\cdot\frac{8}{9}+\frac{64}{81}\right)+\left(10155-6\cdot\frac{64}{81}\right)\)

\(=\left(5x-2y\right)^2+6\left(y-\frac{8}{9}\right)^2+\left(10155-6\cdot\frac{64}{81}\right)\ge10155-6\cdot\frac{64}{81}\)

\(\Rightarrow A\ge2031-\frac{6}{5}\cdot\frac{64}{81}\)

Dấu "=" xảy ra tại \(y=\frac{8}{9};x=\frac{16}{45}\)

PS:Is that true ???

28 tháng 12 2019

Gợi ý:

\(A=2\left(y-x-1\right)^2+3\left(x-2\right)^2+2017\ge2017\)

Đẳng thức xảy ra khi \(x=2;y=3\)

Vậy \(A_{min}=2017\Leftrightarrow x=2;y=3\)

11 tháng 8 2015

\(B=5x^2+2y^2+4xy-2x+4y+2020\)

\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)

\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)

\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)

11 tháng 8 2015

=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015

=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]

=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015

giá trị nhỏ nhất là 2015

16 tháng 12 2019

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)