K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2020

a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)

\(y_{min}=2\) khi \(cos^2x=1\)

\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)

b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)

\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)

\(y_{min}\) ko tồn tại

c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)

\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)

NV
3 tháng 10 2020

a.

\(\left\{{}\begin{matrix}sin^4x\le sin^2x\\cos^3x\le cos^2x\end{matrix}\right.\) \(\Rightarrow y\le sin^2x+cos^2x=1\)

\(y_{max}=1\) khi \(\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(y=\left(1-cos^2x\right)^2+cos^3x=cos^4x+cos^3x-2cos^2x+1\)

\(y=\left(cosx+1\right)\left(cos^3x-2cosx+2\right)-1\ge-1\)

\(y_{min}=-1\) khi \(cosx=-1\)

b.

\(y=sin^4x.cos^2x\ge0\)

\(y_{min}=0\) khi \(sin2x=0\)

\(y=sin^4x\left(1-sin^2x\right)=\frac{1}{2}.sin^2x.sin^2x.\left(2-2sin^2x\right)\le\frac{1}{2}\left(\frac{sin^2x+sin^2x+2-2sin^2x}{3}\right)^3=\frac{4}{27}\)

\(y_{max}=\frac{4}{27}\) khi \(sin^2x=\frac{2}{3}\)

c.

\(y_{max}\) ko tồn tại

\(y=\frac{tanx}{2}+\frac{tanx}{2}+\frac{1}{tan^2x}\ge3\sqrt[3]{\frac{tan^2x}{4tan^2x}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(tanx=\sqrt[3]{2}\)

NV
16 tháng 9 2020

d.

\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(sin2x=-1\)

\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)

e.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

\(y_{max}=2\) khi \(sinx=0\)

NV
16 tháng 9 2020

a.

\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(cosx=0\)

\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)

b.

\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)

\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)

c.

\(0\le cos^23x\le1\Rightarrow1\le y\le3\)

\(y_{min}=1\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)

15 tháng 9 2020

câu b lập bảng biến thiên đc ko

NV
15 tháng 9 2020

a.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le4\)

\(y_{max}=4\) khi \(sinx=0\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

b.

Đặt \(4sinx-3cosx=5\left(\frac{4}{5}sinx-\frac{3}{5}cosx\right)=5sin\left(x-a\right)=t\)

\(\Rightarrow-5\le t\le5\)

\(\Rightarrow y=t^2-4t+1=\left(t-2\right)^2-3\ge-3\)

\(y_{min}=-3\) khi \(t=2\)

\(y=t^2-4t-45+46=\left(t-9\right)\left(t+5\right)+46\le46\)

\(y_{max}=46\) khi \(t=-5\)

NV
23 tháng 7 2020

a/

\(y=\frac{1}{sinx}+\frac{1}{cosx}\ge\frac{4}{sinx+cosx}=\frac{4}{\sqrt{2}sin\left(x+\frac{\pi}{4}\right)}\ge\frac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=2\sqrt{2}\) khi \(\left\{{}\begin{matrix}sinx=cosx\\sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

\(y_{max}\) không tồn tại (y dần tới dương vô cùng khi x gần tới 0 hoặc \(\frac{\pi}{2}\))

b/

\(y=\frac{1}{1-cosx}+\frac{1}{1+cosx}=\frac{1+cosx+1-cosx}{1-cos^2x}=\frac{2}{sin^2x}\)

Hàm số ko tồn tại cả min lẫn max ( \(0< y< \infty\))

c/

Do \(tan^2x\) ko tồn tại max (tiến tới vô cực) trên khoảng đã cho nên hàm ko tồn tại max

\(y=2+\frac{sin^4x+cos^4x}{\left(sinx.cosx\right)^2}+\frac{1}{sin^4x+cos^4x}\ge2+2\sqrt{\frac{sin^4x+cos^4x}{\frac{1}{4}sin^22x.\left(sin^4x+cos^4x\right)}}\)

\(y\ge2+\frac{4}{sin2x}\ge2+\frac{4}{1}=6\)

\(y_{min}=6\) khi \(\left\{{}\begin{matrix}sin2x=1\\sin^4x+cos^4x=sinx.cosx\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

3 tháng 9 2016

a)\(\forall x\Rightarrow sinx\le1\Rightarrow1-sinx\ge0\)

cosx\(\ge-1\Rightarrow1+cosx\ge0\)

ĐK:cosx\(\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

\(\Rightarrow D=\left\{R\backslash\left\{\pi+k2\pi\right\}\right\}\)

b)ĐK:\(cos\left(2x+\frac{\pi}{3}\right)\ne0\Leftrightarrow2x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{12}+\frac{k\pi}{2}\)

\(\Rightarrow D=\left\{R\text{\}\left\{\frac{\pi}{12}+\frac{k\pi}{2}\right\}\right\}\)