Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.
b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.
Lời giải:
Có \(\sqrt{x+6\sqrt{x-9}}+m\sqrt{x+2\sqrt{x-9}-8}=x+\frac{3m+1}{2}\)
\(\Leftrightarrow \sqrt{(\sqrt{x-9}+3)^2}+m\sqrt{(\sqrt{x-9}+1)^2}=x+\frac{3m+1}{2}\)
\(\Leftrightarrow \sqrt{x-9}+3+m(\sqrt{x-9}+1)=x+\frac{3m+1}{2}\)
\(\sqrt{x-9}(m+1)=x+\frac{3m+1}{2}-m-3\)
\(\Leftrightarrow \sqrt{x-9}(m+1)=x+\frac{m-5}{2}\)
Đặt \(\sqrt{x-9}=t\) . Ta cần tìm m sao cho PT có hai nghiệm \(t_1,t_2| 0\leq t_1< 1< t_2\)
BPT tương đương:
\(t(m+1)=t^2+9+\frac{m-5}{2}\)
\(\Leftrightarrow 2t^2-2t(m+1)+(m+13)=0\)
Để PT có hai nghiệm thì; \(\Delta'=(m+1)^2-2(m+13)>0\)
\(\Leftrightarrow m^2-25>0\Leftrightarrow m>5\) hoặc \(m< -5\) (1)
Khi đó áp dụng hệ thức Viete:
\(\left\{\begin{matrix} t_1+t_2=m+1\\ t_1t_2=\frac{m+13}{2}\end{matrix}\right.\)
Để hai nghiệm thỏa mãn \(0\leq t_1< 1< t_2\Rightarrow \left\{\begin{matrix} t_1t_2\geq 0\\ (t_1-1)(t_2-1)< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ t_1t_2-(t_1+t_2)+1< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{m+13}{2}-(m+1)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{13-m}{2}< 0\end{matrix}\right.\Leftrightarrow m> 13\) (2)
Kết hợp (1); (2) suy ra $m\geq 13$
a/ \(M=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\left(\sqrt{x}+2\right)\right].\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\sqrt{x}-x\)
b/ Chứng minh
\(\sqrt{x}-x\le\dfrac{1}{4}\)
\(\Leftrightarrow4x-4\sqrt{x}+1\ge0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2\ge0\) (đúng)
a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.
b) Vế trái có ≥ 1 ∀x ∈ R,
≥ 1 ∀x ∈ R
=> + ≥ 2 ∀x ∈ R.
Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.
c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.
a) đk \(\left\{{}\begin{matrix}2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ne0\end{matrix}\right.\)
b) đk \(x+3>0\Leftrightarrow x>-3\)
c) \(\left\{{}\begin{matrix}x-1>0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ge0\end{matrix}\right.\Leftrightarrow x>1\)
d) đk \(\left\{{}\begin{matrix}x^2-4\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne\pm2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Bài 1 :
Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+∞)
Dễ thấy f(x) > 0
f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)
= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)
Và f(1) = 1
Vậy f(x) có tập giá trị là (0;1]
* Nếu m \(\ge1\) thì bpt vô nghiệm
* Nếu m < 1 thì bpt có nghiệm
Vậy tập hợp m thỏa mãn là (0;1)
(0;1)
ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau
ĐKXĐ: \(x>1\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\)
\(\Rightarrow m^2\left(x-1\right)+m=x\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2-m\) (1)
Pt đã cho vô nghiệm khi:
TH1: (1) vô nghiệm \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m^2-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)
TH2: (1) có nghiệm thỏa mãn \(x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m^2-m}{m^2-1}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{m}{m+1}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{1}{m+1}\ge0\end{matrix}\right.\) \(\Leftrightarrow m>-1\)
Vậy pt vô nghiệm khi \(m\ge-1\)