K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

13 tháng 8 2016

Điều kiện xác định : \(\begin{cases}2x-4\ge0\\x-m\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\ge m\end{cases}\) \(\Leftrightarrow x\ge m\ge2\)

Bình phương hai vế : \(4\left(x-2\right)^2=9\left(x-m\right)\Leftrightarrow4\left(x^2-4x+4\right)=9x-9m\)

\(\Leftrightarrow4x^2-25x+\left(16+9m\right)=0\)

Để pt có nghiệm thì \(\Delta=25^2-4.4.\left(16+9m\right)\ge0\)

\(\Leftrightarrow m\le\frac{41}{16}\)

Vậy để pt có nghiệm thì \(2\le m\le\frac{41}{16}\)

NV
23 tháng 10 2020

\(x\ge-1\)

Khi đó pt tương đương:

\(2x^2-2x+m=\left(x+1\right)^2\)

\(\Leftrightarrow m=-x^2+4x+1\)

Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)

\(-\frac{b}{2a}=2\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)

\(\Rightarrow f\left(x\right)\le5\) ; \(\forall x\ge-1\)

Vậy pt có nghiệm khi và chỉ khi \(m\le5\)

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

NV
27 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\2x^2-2x+m=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\-x^2+4x+1=m\end{matrix}\right.\)

Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)

\(-\dfrac{b}{2a}=2>-1\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)

\(\Rightarrow f\left(x\right)\le5\) ;\(\forall x\ge-1\)

\(\Rightarrow\) Pt đã cho có nghiệm khi \(m\le5\)

28 tháng 8 2021

hello

Bài 1:

\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)

=>-2x+3m-4+20x-25=0

=>18x+3m-29=0

Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)

=>4-48m+64<=0

=>-48m+68<=0

=>-48m<=-68

=>m>=17/12