Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+mx+2=0\Rightarrow m=-x^2-\frac{2}{x}\) , \(x\ne0\)
Xét \(f\left(x\right)=-x^2-\frac{2}{x}\Rightarrow f'\left(x\right)=-2x+\frac{2}{x^2}=\frac{-2x^3+2}{x^2}\)
Ta có : Đồ thị hàm số (1) cắt trục hoành tại một điểm duy nhất \(\Leftrightarrow m>-3\)
: 0 8 0 1 8 f'(x) f(x) 8 8 8 8 -3
Ta có : \(y'=\frac{mx^2+1}{x^2}\)
Hàm số có 2 cực trị \(\Leftrightarrow y'=0\)
có 2 nghiệm phân biệt khác 0 => m<0
\(A\left(-\frac{1}{\sqrt{-m}};2\sqrt{-m}\right);B\left(\frac{1}{\sqrt{-m}};-2\sqrt{-m}\right)\)
\(\Rightarrow AB^2=\frac{4}{\left(-m\right)}+16\left(-m\right)\)
\(AB^2\ge\sqrt[2]{\frac{4}{\left(-m\right)}16\left(-m\right)}=16\) không đổi
Kết luận \(m=-\frac{1}{2}\)
Hàm số xác định trên R
Ta có \(y'=x^2-2mx+2m-1\Rightarrow y'=0\Leftrightarrow x^2-2mx+2m-1=0\left(2\right)\)
Hàm số có 2 điểm cực trị dương \(\Leftrightarrow\left(2\right)\) có 2 nghiệm dương phân biệt :
\(\Leftrightarrow\begin{cases}\Delta'=m^2-2m+1>0\\S=2m>0\\P=2m-1>0\end{cases}\) \(\Leftrightarrow\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\)
Vậy \(\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\) là giá trị cần tìm
Phương trình hoành độ giao điểm của (C) và Ox :
\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\), \(x\ne1\)
Đặt \(f\left(x\right)=mx^2+x+m\)
(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1
\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)
Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn
Hàm số xác định với mọi \(x\in R\Leftrightarrow\begin{cases}\frac{x^2-mx+1}{x^2-x+1}>\frac{2}{3}\\\frac{x^2-mx+1}{x^2-x+1}\le\frac{2}{3}\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2-\left(3m-2\right)x+1>0\\x^2+\left(2m-3\right)x+1\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\Delta_1=9m^2-12m< 0\\\Delta_2=4m^2-12m+5\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}0< m< \frac{4}{3}\\\frac{1}{2}\le m\le\frac{5}{2}\end{cases}\)
\(\Leftrightarrow\frac{1}{2}\le m< \frac{4}{3}\)
Vậy \(\frac{1}{2}\le m< \frac{4}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)
y có hai cực trị <=> y' =0 có hai nghiệm phân biệt <=> \(\Delta\) > 0 \(\rightarrow\) tìm điều kiện m
áp dụng vi-et x1+x2= -b/a và x1.x2= c/a
thay vào x1.x2 + 2(x1+x2) =1 =>m