K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

Nếu như thế này thì -1 ko phải là nghiệm rồi coi lại đi 

7 tháng 6 2020

\(\left(2x-3\right)\left(1^5-x\right)\)

Đa thức có nghiệm <=> \(\left(2x-3\right)\left(1^5-x\right)=0\)

                                <=> \(\orbr{\begin{cases}2x-3=0\\1^5-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}2x=3\\1-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)

Vậy nghiệm của đa thức là 3/2 và 1

11 tháng 5 2021

`A(x)=0`

`<=>4x(x-1)-3x+3=0`

`<=>4x(x-1)-3(x-1)=0`

`<=>(x-1)(4x-3)=0`

`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$

`B(x)=0`

`<=>2/3x^2+x=0`

`<=>x(2/3x+1)=0`

`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$

`C(x)=0`

`<=>2x^2-9x+4=0`

`<=>2x^2-8x-x+4=0`

`<=>2x(x-4)-(x-4)=0`

`<=>(x-4)(2x-1)=0`

`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$

11 tháng 5 2021

Bỏ số 1 chỗ 3/4 đi nha :D

27 tháng 9 2020

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

27 tháng 9 2020

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

11 tháng 5 2021

a,\(2x+1=0< =>2x=-1< =>x=-\frac{1}{2}\)

b,\(\left(x+1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)

c,\(1-4x^2=0< =>\left(1-2x\right)\left(1+2x\right)=0< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

d,\(2x^2-3x=0< =>x\left(2x-3\right)=0< =>\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)