K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Ta có : 

\(4x+4y=12\)

\(\Rightarrow x+y=3\)

\(\Rightarrow x=3-y\)

Mà \(x-2y=-21\)

\(\Rightarrow3-y-2y=-21\)

\(\Rightarrow-3y=-24\)

\(\Leftrightarrow y=8\)

\(\Rightarrow4x+8.4=12\)

\(\Rightarrow4x=12-32\)

\(\Rightarrow4x=-20\)

\(\Rightarrow x=-5\)

KL \(\orbr{\begin{cases}x=-5\\y=8\end{cases}}\)

15 tháng 6 2019

x-2y=-21 và 4x+4y=12

<=> x-2y=-21 và x+y=3

trừ 2 vế , ta được

-3y=-24 và x=3-y

<=> y=8 và x = 3-8=-5

 vậy x=-5 và y=8

10 tháng 11 2019

Rút y ở phương trình thứ nhất, rồi thay vào phương trình thứ hai để tìm x.

Từ phương trình thứ nhất ta có:

\(y=13+4x\)(*)

Thay y vào phương trình thứ hai ta có:

\(-4+2\left(13+4x\right)=22\)

Từ đó tự tính: Nếu mày đã học nghiệm rồi

\(x=-1\)

Thay x vào (*) ta tìm y:

\(y=13+4.\left(-1\right)\)

Vậy hiệu nghiệm của hệ phương trình này là:
\(\hept{\begin{cases}x=-1\\y=9\end{cases}}\)

10 tháng 11 2019

Ta có :

\(\hept{\begin{cases}4x-y=13\\-4x+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-\left(13+y\right)+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13-y+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13+y=22\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=13+y\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}4x=13+35\\y=35\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=48\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}x=12\\y=35\end{cases}}}\)

4 tháng 10 2021

\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)

Vì \(2y⋮2\)

\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)

Đặt \(x=2k+1\left(k\in Z\right)\)

Thay vào (1), ta được :

\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)

Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)

\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$

17 tháng 9 2017

Nghiệm là:

\(\hept{\begin{cases}x=6\\y=2\end{cases}}\)thảo mãn

P/s: Mk ko chắc đâu nhé

17 tháng 9 2017

Rút x ở phương trình thứ hai, rồi thay vào phương trình thứ nhất để tìm y.

Từ phương trình thứ hai ta có:

\(x=-3+4y\) ( * )

Thay x vào phương trình thứ nhất ta có:

\(4\left(-3+4y\right)-5y=-12\)

Giải ra ta được

\(y=0\)

Thay y vào (*) ta tìm x:

\(x=-3+4.0\)

\(x=-3\)

Vậy nghiệm của hệ phương trình là:

\(\hept{\begin{cases}x=-3\\y=0\end{cases}}\)

27 tháng 1 2021

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

8 tháng 2 2021

x=4; y=1

17 tháng 5 2021

Để hệ pt có nghiệm duy nhất khi \(3\ne\frac{2}{m}\Leftrightarrow3m\ne2\Leftrightarrow m\ne\frac{2}{3}\)

Với \(m\ne\frac{2}{3}\)hệ pt có nghiệm suy nhất 

\(\hept{\begin{cases}3x+2y=m\\x+my=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2y=m\\3x+3my=9\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2-3m\right)y=m-9\\x+my=3\end{cases}}}}\)

\(\left(1\right)\Rightarrow y=\frac{m-9}{2-3m}\)

\(\left(2\right)\Rightarrow x=3-my=3-\frac{m^2-9m}{2-3m}=\frac{6-9m-m^2+9m}{2-3m}=\frac{6-m^2}{2-3m}\)

Thay vào biểu thức trên ta được : 

\(\frac{18-3m^2}{2-3m}+\frac{4m-36}{2-3m}=-5\Rightarrow-18-3m^2+4m=-10+15m\)

\(\Leftrightarrow-3m^2-11m-8=0\Leftrightarrow\left(3m+8\right)\left(m+1\right)=0\Leftrightarrow m=-\frac{8}{3};m=-1\)( tmđk )

check lại hộ mình nhé =) 

22 tháng 3 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Hai đường thẳng trên song song nên chúng không có điểm chung hay hệ phương trình (IV) vô nghiệm.

Phương pháp thế:

Ta có ( biểu diễn y theo x từ phương trình thứ nhất):

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Vậy hệ phương trình (IV) vô nghiệm.

1 tháng 5 2016

Tạo hằng đẳng thức đi là ra