Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lí Bezout ta có:
\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)
\(\Leftrightarrow75-5a+27=2\)
\(\Leftrightarrow102-5a=2\)
\(\Rightarrow a=20\)
b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)
\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)
Sử dụng phương pháp đồng nhất hệ số ta có:
\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)
Các bạn ơi giúp mình với gấp lắm
Cho a,b,c thoả mãn a-b+c=123
Tìm số dư trong phép chia a2-b2+c2 cho 2
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
số dư là 1 vì lũy thừa có chữ số tận cùng 1 thì số dư cũng là 1
+ \(f\left(x\right)=ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)
\(f\left(-2\right)=-8a+4b+c=\left(-2+2\right).Q\left(x\right)\)=> -8a +4b +c =0 ( 1)
+ \(f\left(1\right)=a1^3+b1^2+c=\left(1^2-1\right).H\left(1\right)+\left(1+5\right)\)
=> a+b+c = 6 (2)
+\(f\left(-1\right)=a\left(-1\right)^3+b\left(-1\right)^2+c=\left(\left(-1\right)^2-1\right).H\left(-1\right)+\left(-1+5\right)\)
=> -a +b +c = 4 (3)
từ (2) (3) =. b+c =10 và a =-4
(1) => -8a +4b +c =0 =>4b+c = -32 => 3b +(b+c) = -32 => 3b =-32 - 10 => b =-42/3 = -14
=> c =10 - b = 10 -(-14) = 24
Vậy a = - 4 ; b = -14 ; c = 24
Có trong câu hỏi tương tự như.
Ta có: 224≡1(mod35)
(224)83≡183≡1(mod35)
⇒21992⋅27≡1⋅23≡23(mod35)
Vậy 21999 chia 35 dư 23