K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Xét :

x^4 - 3x^3 + ax + b

= (x^4-3x^3+x^2)-(x^2-3x+1) +ax+b - 3x + 1

= (x^2-3x+1).(x^2-1) + (a-3).x + (b+1)

=> để x^4-3x^3+ax+b chia hết cho x^2-3x+1 thì :

a-3=0 và b+1=0

<=> a=3 và b=-1

Vậy ...........

Tk mk nha

17 tháng 8 2017

tách f(x) rồi còn thừa thiếu bao nhiêu dùng hệ số bất định là ra ngay ấy mà

31 tháng 7 2019

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

31 tháng 7 2019

à nhầm, \(a=b=c=\frac{4}{3}\) nhé 

14 tháng 8 2017

 dùng  đồng nhất thức