Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n phải khác 3
b)nếu n=0thi B=4 phần âm 3
tự làm phần còn lại nha
a) Để B là phân số thì n-3 \(\ne\) 0 \(\Rightarrow n\ne3\)
Vậy để B là phân số thì n \(\ne\) 3
b) Với n=0 thì: B=\(\dfrac{4}{0-3}=\dfrac{4}{-3}\)
Với n=10 thì: B=\(\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với n=-2 thì: B=\(\dfrac{4}{-2-3}=\dfrac{4}{-5}\)
A là một phân số khi và chỉ khi n – 2 ≠ 0 ⇒ n ≠ 2
A là số nguyên khi và chỉ khi 3 chia hết cho (n - 2) hay (n - 2) ∈ Ư(3)
Ta có: Ư(3) = {-3 ; -1 ; 1 ; 3}
n – 2 = -3 ⇒ n = -1
n – 2 = -1 ⇒ n = 1
n – 2 = 1 ⇒ n = 3
n – 2 = 3 ⇒ n = 5
vậy n ∈ {-1; 1 ; 3 ; 5} thì A là số nguyên
Lời giải:
A là một phân số khi và chỉ khi n – 2 ≠ 0 ⇒ n ≠ 2
A là số nguyên khi và chỉ khi 3 chia hết cho (n - 2) hay (n - 2) ∈ Ư(3)
Ta có: Ư(3) = {-3 ; -1 ; 1 ; 3}
n – 2 = -3 ⇒ n = -1
n – 2 = -1 ⇒ n = 1
n – 2 = 1 ⇒ n = 3
n – 2 = 3 ⇒ n = 5
vậy n ∈ {-1; 1 ; 3 ; 5} thì A là số nguyên
Để A là một số nguyên
=> n - 2 chia hết cho n + 5
=> n + 5 - 7 chia hết cho n + 5
=> -7 chia hết cho n + 5
=> n + 5 thuộc Ư(-7) = {1 ; -1 ; 7 ; -7}
Ta có bảng sau :
n + 5 | 1 | -1 | 7 | -7 |
n | -4 | -6 | 2 | -12 |
Vậy những số ngoài (-4 ; -6 ; 2 ; -12) thì A là phân số
a) Để A=\(\frac{n-2}{n+5}\)là 1 phân số thì n+5 khác 0 , n khác -5 và n-2 ko chia hết cho n+5
=>n+5-7 ko chia hết cho n+5
=>7 ko chia hết cho n+5
=>n+5 ko thuộc Ư (7)={1;7;-1;-7}
=>n ko thuộc {-4;2;-6;-12}
b) Để A là 1 số nguyên
=>n-2 chia hết cho n+5
=>7 chia hết cho n+5
=>n+5 thuộc Ư(7)={1;7;-1;-7}
....
Đến đấy lm nốt nha bn
mk lm tắt mấy chỗ mong bn thông cảm mk bận lắm
Ta có :
\(A=\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\)
Để \(A\inℤ\) thì \(\frac{3}{n-2}\inℤ\) \(\Rightarrow\) \(3⋮\left(n-2\right)\) \(\Rightarrow\) \(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{-1;1;3;5\right\}\)
Chúc bạn học tốt ~
Ta có n-5/n-2=(n-2)-3/n-2=1 - 3/n-2
Để n-5/n-2 nguyên thì 3 chia hết cho n-2
Nên n-2 là ước của 3
Với n-2=1=>n=3
Với n-2=-1=>n=1
Với n-2=3 =>n=5
Với n-2=-3=>n=-1
Vậy n=-1;5;1;3
a)
Để A tồn tại thì mẫu số phải khác 0
Khi đó \(n-2\ne0\Rightarrow n\ne2\)
Vậy để A tồn tại thì \(n\ne2\)
b)
Để A là số nguyên hay \(-\frac{5}{n-2}\in Z\)
Để \(-\frac{5}{n-2}\in Z\Rightarrow n-2\inƯ\left(5\right)\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;7;1;-3\right\}\)
Vậy............
Để A < 0 thì \(-\frac{5}{n-2}< 0\)
\(\Rightarrow\frac{5}{n-2}>0\)
\(\Rightarrow n-2>0\Rightarrow n>2\)
Vậy để A < 0 thì n > 2
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
a) Để P là phân số thì -11 không ⋮ n
=> n không thuộc Ư(-11) = { 1; 11; -1; -11 }
b) Thay n = 3 ta có :
\(P=-\frac{11}{3}\)
Thay n = -5 ta có :
\(P=\frac{-11}{-5}=\frac{11}{5}\)
Thay n = 9 ta có :
\(P=\frac{-11}{9}\)
a) Để Q là phân số
\(\Leftrightarrow n-1\ne0\Leftrightarrow n\Leftrightarrow1\)
Vậy với x khác 1 thì biểu thức đã cho là phân số.
b) Thay n tính ( So sánh với ĐKXĐ )
c) n là số nguyên thì n - 1 thuộc Ư {10}
Để \(\dfrac{n-2}{n-5}\) là số nguyên thì n-2⋮n-5
n-5+3⋮n-5
n-5⋮n-5⇒3⋮n-5
n-5∈Ư(3)
Ư(3)={1;-1;3;-3}
n∈{6;4;8;2}
Có: \(\dfrac{n-2}{n-5}\) là sô nguyên ⇒ \(n-2\) ⋮ \(n-5\) . Mà \(n-5\) ⋮ \(n-5\)
⇒ 3 ⋮ \(n-5\) ⇒ \(n-5\) ∈ {1; -1; 3; -3}
⇒ \(n\) ∈ {2; 4; 6; 8}
Vậy \(n\) ∈ {2; 4; 6; 8}