K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Ta có :

\(3n+5⋮n-7\)

\(n-7⋮n-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+5⋮n-7\\3n-21⋮n-7\end{matrix}\right.\)

\(\Leftrightarrow26⋮n-7\)

\(n\in N\Leftrightarrow n-7\in N;n-7\inƯ\left(26\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n-7=1\Leftrightarrow n=8\\n-7=26\Leftrightarrow n=33\\n-7=2\Leftrightarrow x=9\\n-7=13\Leftrightarrow n=20\end{matrix}\right.\)

Vậy ....

11 tháng 8 2017

\(3n+5⋮n-7\)

\(\Rightarrow3n-21+26⋮n-7\)

\(\Rightarrow3\left(n-7\right)+26⋮n-7\)

\(\Rightarrow26⋮n-7\)

\(\Rightarrow n-7\inƯ\left(26\right)\)

\(Ư\left(26\right)=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)

\(\Rightarrow\left[{}\begin{matrix}n-7=1\Rightarrow n=8\\n-7=-1\Rightarrow n=6\\n-7=2\Rightarrow n=9\\n-7=-2\Rightarrow n=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n-7=13\Rightarrow n=20\\n-7=-13\Rightarrow n=-6\\n-7=26\Rightarrow n=33\\n-7=-26\Rightarrow n=-19\end{matrix}\right.\)

Vậy...

7 tháng 8 2016

\(P=3n^3-7n^2+3n+6\)

\(=3n^3+2n^2-9n^2-6n+9n+6\)

\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)

\(=\left(3n+2\right)\left(n^2-3n+3\right)\)

để p là nguyên tố thì 3n+2 hoặc n2-3n+3  phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài) 

*3n+2=1=>n=-1/3

*n2-3n+3=1<=>n2-3n+2=0

\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)

                            \(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)

nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)

vậy n=1 

4 tháng 12 2018

9.27 ≤ 3n ≤ 243 ⇒ 32.33 ≤ 3n ≤ 35

⇒ 35 ≤ 3n ≤ 35 ⇒ n = 5

15 tháng 12 2017

\(2.16\ge2^n\ge4\)

\(\Rightarrow32\ge2^n>4\)

\(\Rightarrow2^5\ge2^n>2^2\)

\(\Rightarrow n\le\left\{3;4;5\right\}\)

\(2.16\ge2^n\ge4\Rightarrow2.2^4\ge2^n\ge2^2\Rightarrow2^5\ge2^n\ge2^2\Rightarrow5\ge n\ge2\Rightarrow n=\left(5;4;3;2\right)\)

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

18 tháng 10 2019

xét n=0 => không thỏa mãn;n=1 => thỏa mãn; 

xét n\(\ge2\)

với n là số chẵn thì 

19n+1n=(19+1)(19n-1  - 19n-2  +... - 1)+ 2.1n = 20A + 2

18n +2n = (18+2)(18n-1-  18n-2.2 +  18n-3.22  - ... -  2n-1) + 2.2n = 20B +2.2n

=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5

n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1

4k chỉ có chữ số tận cùng là 4 hoặc 6

với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)

với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5)  => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn

xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2  +...+ 1) + (18+2)(18n-1 -  18n-2.2 +...+  2n-1)

=20U +20V chia hết cho 5

vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn

27 tháng 9 2019

+) 18 chia 5 dư 3

=> \(18^n;3^n\) có cùng số dư khi chia cho 5.

+) 19 chia 5 dư 4

=> \(19^n;4^n\)có cùng số dư khi chia cho 5

=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5

+) Chúng ta đi tìm n bằng cách quy nạp:

Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)

Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)

Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)

Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)

Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)

Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)

...

Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.

+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)

(i) Với n = 4k ta có: 

Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1;  \(256^k\)chia 5 dư 1

\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)

=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.

(ii) Với n = 4k + 1ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5

=>  n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iii)  Với n = 4k + 2  ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.

=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5

=>  n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iv)  Với n = 4k + 3ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5  dư 10 => chia hết cho 5

=>  n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

=> n không chia hết cho 4 thì  \(1^n+2^n+3^n+4^n\) chia hết cho 5.

Vậy suy ra  \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.