Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(7x^{n-3}:\left(-8x^5\right)=-\dfrac{7}{8}x^{n-3-5}=-\dfrac{7}{8}x^{n-8}\)
Để đây là phép chia hết thì n-8>=0
hay n>=8
b: \(\dfrac{\left(3x^{n+1}-2x^5\right)}{-5x^3}=-\dfrac{3}{5}x^{n+1-3}+\dfrac{2}{5}x^2=\dfrac{-3}{5}x^{n-2}+\dfrac{2}{5}x^2\)
Để đây là phép chia hết thì n-2>=0
hay n>=2
a,Để phép chia thực hiện đc<=>x^n<=x^5=>n<=5=>n=(0;1;2;3;4;5)
y^n<=y=>n<=1=>n=(1;0)
Từ hai ý trên=>n=(0;1)
b,,Để phép chia thực hiện đc<=>x^n+1<=x^2=>n+1<=2=>n=(0;1)
y^n=1<=y^2=>n+1<=2=>n=(0;1)
Từ hai ý trên =>n=(0;1)
1: \(\dfrac{A}{B}=\dfrac{4}{3}x^{n+1-3}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n< =0\end{matrix}\right.\Leftrightarrow2< =n< =3\)
2: \(\dfrac{A}{B}=\dfrac{7}{5}x^{n-1-2}y^{5-n}-xy^{4-n}=\dfrac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-3>=0\\5-n>=0\\4-n>=0\end{matrix}\right.\Leftrightarrow3\le n\le4\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)