Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2
vì\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6
\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8
\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10
vậy x=6,y=8,z=10
vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)
từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1
vì\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9
\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12
\(\dfrac{z}{16}\)=-1=>z=-1.16=-16
vậy...
x/y=5/6 nên x/5=y/6=k
=>x=5k; y=6k
\(C=\dfrac{3\cdot5k-2\cdot6k}{2\cdot5k-3\cdot6k}=\dfrac{3\cdot5-2\cdot6}{2\cdot5-3\cdot6}=\dfrac{3}{10-18}=-\dfrac{3}{8}\)
a) \(\dfrac{x}{y}=-\dfrac{3}{5}\) và x-2y=-52
Ta có: \(\dfrac{x}{y}=-\dfrac{3}{5}\Rightarrow\dfrac{x}{-3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{-3}=\dfrac{y}{5}=\dfrac{x-2y}{\left(-3\right)-2\times5}=\dfrac{-52}{-13}=4\)( vì x-2y = -52)
Suy ra: \(\dfrac{x}{-3}=4\Rightarrow x=4\times\left(-3\right)=-12\)
\(\dfrac{y}{5}=4\Rightarrow y=4\times5=20\)
Vậy x= -12, y= 20
b)3x=y=6z và 2x+3y-4z = 90
Ta có 3x=y=6z \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{1}=\dfrac{2x+3y-4z}{2\times2+3\times6-4\times1}=\dfrac{90}{18}=5\)(vì 2x+3y-4z = 90)
Suy ra: \(\dfrac{x}{2}=5\Rightarrow x=5\times2=10\)
\(\dfrac{y}{6}=5\Rightarrow y=5\times6=30\)
\(\dfrac{z}{1}=5\Rightarrow z=5\times1=5\)
Vậy x= 10, y= 30, z = 5
còn câu c)\(\dfrac{2x}{3}=\dfrac{6y}{5}=\dfrac{4z}{3}\) và x+2y-3z=99
Ta có : \(\dfrac{2x}{3}=\dfrac{6y}{5}=\dfrac{4z}{3}\)
\(\Rightarrow\dfrac{2x}{3\times12}=\dfrac{6y}{5\times12}=\dfrac{4z}{3\times12}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{10}=\dfrac{z}{9}\)
Sau đó Mai áp dụng tính chất dãy tỉ số = nhau rùi lm như trên nha
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
Ta có 3x-2y/5=2z-5x/3=5y-3z/2
=> 3xz-2yz/5z=2zy-5xy/3y=5yx-3zx/2x
=\(\frac{3yz-2xz+2zx-5yx+5xy-3zy}{5z+3x+2y}\) =0
=>3x-2y/5=0=>3x=2y=>x/2=y/3 (1)
2z-5x/3=0=>2z=5x=>z/5=x/2 (2)
Từ (1) và (2) => x/2=y/3=z/5
(bạn tự lm tiếp nhé!)
a: \(\dfrac{2x-y}{3x+2y}=\dfrac{5}{2}\)
\(\Leftrightarrow15x+10y=4x-2y\)
=>11x=-12y
=>\(\dfrac{x}{-12}=\dfrac{y}{11}\)
Đặt \(\dfrac{x}{-12}=\dfrac{y}{11}=k\)
=>x=-12k; y=11k
\(P=\dfrac{5x+4y}{25x-y}=\dfrac{5\cdot\left(-12k\right)+4\cdot11k}{25\cdot\left(-12k\right)-11k}=\dfrac{16}{311}\)
b: \(\dfrac{x-5y}{x-3y}=\dfrac{4}{3}\)
=>4x-12y=3x-15y
=>x=-3y
\(\Leftrightarrow\dfrac{x}{-3}=\dfrac{y}{1}=k\)
=>x=-3k; y=k
\(P=\dfrac{x^3+2y^3}{x^3-y^3}=\dfrac{-27k^3+2k^3}{-27k^3-k^3}=\dfrac{-25}{-28}=\dfrac{25}{28}\)
Hắc Hường , Nguyễn Nhật Minh, Aki Tsuki, ... pls help me