Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
vậy \(x=-1;y=-3\)
1.
\(P=x^2+6y+10+y^2-x\)
\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)
2.
\(N=x-x^2\)
\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)
Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
Ta có: M = x2 + 6y + 10 + y2 - x
M = ( x2 - x + 1/4 ) + ( y2 + 6y + 9) + 3/4
M = ( x - 1/2)2 + ( y + 3 )2 + 3/4
- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.
Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0
<=> x = 1/2 và y = -3.
\(x^2+y^2-2x+6y+10=0\)
\(\Leftrightarrow x^2-2x+1+y^2+6y+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
M=x2-2.x.1/2+(1/2)2-(1/2)2 +y2-2.y.3+32-32+10
M=(x-1/2)2-1/4+(y-3)2-9+10
M=(x-1/2)2 +(y-3)2+3/4 luon >=3/4
Vậy: GTNN cua M la 3/4 khi x=1/2 và y=3
a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)
\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0
Suy ra x=-1;y=-1/2
b.Ta có:\(x^2-6x+y^2-6y+21=3\)
\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0
Suy ra x=y=3
c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0
Suy ra x=y=4
a) 2x2 - 4xy + 4y2 + 2x + 1 = 0
<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0
<=> ( x - 2y )2 + ( x + 1 )2 = 0
<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)
b) x2 - 6x + y2 - 6y + 21 = 3
<=> x2 - 6x + y2 - 6y + 21 - 3 = 0
<=> x2 - 6x + y2 - 6y + 18 = 0
<=> x2 - 6x + 9 + y2 - 6y + 9 = 0
<=> ( x - 3 )2 + ( y - 3 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
c) 2x2 - 8x + y2 - 2xy + 16 = 0
<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0
<=> ( x - y )2 + ( x - 4 )2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)
(x-1/2)2 + (y + 3)2 -1/4 +10 -9
GTNN = 3/4
(giải theo pp học vnen)
\(x^2-y^2+6y=10\\ \Leftrightarrow x^2-\left(y^2-6y+9\right)=1\\ \Leftrightarrow x^2-\left(y-3\right)^2=1\\ \Leftrightarrow\left(x+y-3\right)\left(x-y+3\right)=1\)
Bổ sung đề: Tìm x, y nguyên
Do đó x+y-3 và x-y+3 cũng là các giá trị nguyên
Mà: 1=1.1=(-1).(-1)
TH1: \(x+y-3=x-y+3=1\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\x-y=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=1\end{matrix}\right.\) (nhận)
TH2: \(x+y-3=x-y+3=-1\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\x-y=-4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\) (nhận)
Vậy (x;y)=(1;3);(-1;3)
Sửa đề: Tìm x, y nguyên
\(x^2-y^2+6y=10\\ \Leftrightarrow x^2-\left(y^2-6y+9\right)=10-9\\ \Leftrightarrow x^2-\left(y-3\right)^2=1\\ \Leftrightarrow\left(x-y+3\right)\left(x+y-3\right)=1\)
Vì x, y nguyên nên \(x-y+3;x+y-3\) có giá trị nguyên
\(\Rightarrow x-y+3;x+y-3\) là các ước của 1. Ta có các trường hợp sau:
\(+,\left\{{}\begin{matrix}x-y+3=1\\x+y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-2\\x+y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\left(tm\right)\\y=3\left(tm\right)\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-y+3=-1\\x+y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-4\\x+y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\left(tm\right)\\y=3\left(tm\right)\end{matrix}\right.\)
Vậy: ...