Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
Theo đề bài, ta có :
\(xy=54\Rightarrow2k.3k=54\)
\(\Rightarrow5k=54\Rightarrow k=10,8\)
Ta thấy :
\(\dfrac{x}{2}=10,8\Rightarrow x=10,8.2=21,6\)
\(\dfrac{y}{3}=10,8\Rightarrow y=10,8.3=32,4\)
Đặt :\(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
mà \(xy=54\)
hay 2k . 3k = 54
\(\Rightarrow6.k^2=54\)
\(\Rightarrow k^2=9=\left(\pm3\right)^2\)
Với k = 3 \(\Rightarrow\) \(x=2.3=6;y=3.3=9\)
Với k = -3 \(\Rightarrow x=2.\left(-3\right)=-6;y=3.\left(-3\right)=-9\)
1. Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)
+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)
+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)
+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)
Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)
2,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)
+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)
+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)
+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)
Vậy \(x=-2;y=-3;c=-4\)
xy = 96 => x = 96/y => 2/x = y/48
=> y/48 = 3/y => y = 12 hoặc -12
=> x = 8 hoặc -8
\(\dfrac{2}{x}=\dfrac{3}{y}\) và x.y =96
\(=>\dfrac{x}{2}=\dfrac{y}{3}=k\)
=> x = 2k và y = 3k
Thay vào x.y = 96
(2k . 3k) = 96
\(6k^2=96\)
\(k^2=96:6\)
\(k^2=16\)
\(k=-4\) hoặc \(+4\)
Với k = - 4 => x = 2 . ( - 4 ) = - 8
y = 3 . ( - 4) = - 12
Với k = 4 => x = 2 . 4 = 8
y = 3 . 4 = 12
\(=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y\left(x+y\right)}\right):\dfrac{x^3-y^3}{x^2-y^2}\)
\(=\dfrac{2}{x}-\left(\dfrac{x^2y-\left(x^2-y^2\right)\left(x+y\right)-y^2x}{xy\left(x+y\right)}\right)\cdot\dfrac{x+y}{x^2+xy+y^2}\)
\(=\dfrac{2}{x}-\dfrac{x^2y-x^3-x^2y+xy^2+y^3-xy^2}{xy}\cdot\dfrac{1}{x^2+xy+y^2}\)
\(=\dfrac{2}{x}-\dfrac{-\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\dfrac{1}{x^2+xy+y^2}\)
\(=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{y+x-y}{xy}=\dfrac{1}{y}\)
Câu 1 :
a. Theo đề bài ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}\) và \(x+y=21\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=2.3=6\\\dfrac{y}{5}=3\Rightarrow y=3.5=15\end{matrix}\right.\)
Vậy..............
b. Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}2k\\3y\end{matrix}\right.\)
mà \(x.y=54\)
hay \(2k.3k=54\)
\(\Rightarrow6.k^2=54\)
\(\Rightarrow k^2=9=\left(\pm3\right)^2\)
Với \(k=3\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)
Với \(k=-3\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).3=-9\end{matrix}\right.\)
Vậy..............
c. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{12}{2}=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=6\Rightarrow x=7.6=42\\\dfrac{y}{5}=6\Rightarrow y=5.6=40\end{matrix}\right.\)
Vậy............
1/ a, Ta có :
\(x-2y+3z=35\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)
Vậy ..
Đặt k = . Ta có x = 2k, y = 5k
Từ xy=10. suy ra 2k.5k = 10 => 10 = 10 => = 1 => k = ± 1
Với k = 1 ta được = 1 suy ra x = 2, y = 5
Với k = -1 ta được = -1 suy ra x = -2, y = -5
Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)
Theo đề bài,ta còn có:
\(xy=10\)
hay 2k.5k=10
10k2 =10
\(\Rightarrow k=\pm1\)
Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)
Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)
❏Ta có : \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{2}\\xy=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\xy=54\end{matrix}\right.\)
\(\Rightarrow x^2=54\Rightarrow x=y=\sqrt{54}=3\sqrt{6}\)
Ta có : \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{2}\\xy=54\end{matrix}\right.=>\left\{{}\begin{matrix}x=y\\xy=54\end{matrix}\right.\)
⇒\(x^2=54\)=>x=y=\(\sqrt{54=3\sqrt{6}}\)
Theo đề bài ta có :
\(\dfrac{x-y}{3}=\dfrac{x+y}{13}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x-y+x+y}{3+13}=\dfrac{2x}{16}=\dfrac{x}{8}\)
\(\dfrac{x}{8}=\dfrac{xy}{200}\Leftrightarrow\) \(\dfrac{x}{xy}=\dfrac{8}{200}\Rightarrow\) \(\dfrac{1}{y}=\dfrac{1}{25}\) \(\Rightarrow y=25\)
Thay y = 25 vào biểu thức ta có :
\(\dfrac{x-25}{3}=\dfrac{x+25}{13}\)
\(\Leftrightarrow\) \(13x-325=3x+75\)
\(\Leftrightarrow13x-3x=75+325\)
\(\Leftrightarrow10x=400\)
\(\Rightarrow x=40\)
Vậy \(x=40\) ; \(y=25\)
\(\dfrac{x}{-2}=\dfrac{y}{-3}\) và \(xy=54\)
Đặt: \(\dfrac{x}{-2}=\dfrac{y}{-3}=k\)
Ta có: \(x=-2k\)
\(y=-3k\)
Thay vào biểu thức \(x.y=54\)
=> Ta có: \(-2k.\left(-3k\right)=54\)
=> \(\left(-2.-3\right).k^2\)=54
=> \(6.k^2=54\)
=> \(k^2=54:6\)
=> \(k^2=9\)
=> \(k^2=3^2\) hoặc \(k^2=\left(-3\right)^2\) (*)
=> \(k=3\) hoặc \(k=-3\)
Từ (*) => \(\dfrac{x}{-2}=\dfrac{y}{-3}=3\) hoặc \(-3\)
=> x= 3.-2=-6 ~ x= -3.-2=6
y= 3.-3=9 y=-3.-3=9
Vậy...
\(\dfrac{x}{-2}=\dfrac{y}{-3}=\dfrac{xy}{\left(-2\right).\left(-3\right)}=\dfrac{54}{6}=4\)
\(x=4.\left(-2\right)=-8\)
\(y=4.\left(-3\right)=-12\)
mk ko bt đk hay sai vì mk chưa hk, thấy chưa ai giải tội bn quớ thì giải thử thoy