Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=2^5\)
b) \(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{5^4.2^4}{5^5.\left(-2\right)^5}=\dfrac{1.1}{5.\left(-2\right)}=\dfrac{1}{-10}=\dfrac{-1}{10}\)
( Mình giải được có 2 bài thôi. ) :)
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=3^5\)
b)\(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{\left(25.4\right)^2}{\left(5.\left(-2\right)\right)^5}=\dfrac{\left(100\right)^2}{\left(-10\right)^5}=\dfrac{1}{-10}\)
Còn phần c mình cx đang tắc
a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
Có \(\left(-2\dfrac{3}{4}+\dfrac{1}{2}\right)^2\)=\(\left(\dfrac{-5}{4}+\dfrac{2}{4}\right)^2\)=\(\left(\dfrac{-3}{4}\right)^2\)=\(\dfrac{\left(-3\right)^2}{4^2}=\dfrac{9}{16}\)
Có \(\dfrac{\left(0,125\right)^5.\left(2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,125.2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,3\right)^5}{\left(-0.3\right)^5.\left(0,01\right)^3}=\dfrac{1}{-1.\left(0,01\right)^3}=\dfrac{1}{-\left(0,01\right)^3}\)
1: \(=5^{20}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\cdot\dfrac{-4}{3}\right)^8-1\)
=1+1-1=1
2: \(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)
=1+9/4
=13/4
3: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{3^8\cdot2^{10}+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{3^8\cdot2^{10}\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)
a, \(\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^{10}}{\left(20.5\right)^5}=\dfrac{20^5.5^{10}}{20^5.5^5}=5^5\)
b,\(\dfrac{\left(0,9\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^6}=\dfrac{3^5}{\left(0,3\right)}\)
\(\dfrac{6^2.6^3}{3^5}=\dfrac{3^2.2^2.3^3.2^3}{3^5}=\dfrac{2^5.3^5}{3^5}=2^5=32.\)
\(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{5^4.2^4}{\left(-10\right)^5}=\dfrac{10^4}{10^4.\left(-10\right)}=\dfrac{-1}{10}.\)
\(\dfrac{6^2.6^3}{3^5}=\dfrac{6^{2+3}}{3^5}=\dfrac{6^5}{3^5}=2^5=32\)
\(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{\left(5^2\right)^2.\left(2^2\right)^2}{\left[5.\left(-2\right)\right]^5}=\dfrac{5^4.2^4}{-10^5}=\dfrac{10^4}{-10^5}=\dfrac{-1}{10}\)
\(\dfrac{0,125^5.2,4^5}{-0,3^5.0,001^3}=\dfrac{\left(0,125.2,4\right)^5}{-0,3^5.0,001^3}=\dfrac{0,3^5}{-0,3^5.0,001^3}=-\dfrac{1}{0,001^3}=-1000000000\)
\(\left(2\dfrac{3}{4}+\dfrac{1}{2}\right)=\dfrac{11}{4}+\dfrac{1}{2}=\dfrac{11}{4}+\dfrac{2}{4}=\dfrac{13}{4}\)