Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(40^2-39^2+38^2-37 ^2+...+2^2-1^2\)
= \(\left(40+39\right)\left(40-39\right)+\left(38+37\right)\left(38-37\right)+....+\left(2+1\right)\left(2-1\right)\)
= \(79.1+75.1+....+3.1\)
= \(79+75+....+3\)
= \(\left(79+3\right)\left[\left(79-3\right):4+1\right]:2\)
= \(82.20:2\)
= \(820\)
\(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
=> \(9x^2-6x+1+2x^2+12x+18-11x^2+11=6\)
=> \(6x+30=6\)
=> \(6x=6-30\)
=> \(6x=-24\)
=> \(x=-24:6=-4\)
\(\text{a) }40^2-39^2+38^2-37^2+...+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.79+1.75+...+1.3\)
\(=79+75+...+3\)
\(\text{Từ 3 đến 79 có: (79 - 3) : 2 + 1 = 39 (số hạng)}\)
\(\text{Tổng là: }\frac{\left(79+3\right)\times39}{2}=1599\)
\(\text{b) }\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+2\left(x^2+6x+9\right)+11\left(1-x^2\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\left(9x^2+2x^2-11x^2\right)+\left(-6x+12x\right)+\left(1+18+11\right)=6\)
\(\Leftrightarrow6x+30=6\)
\(\Leftrightarrow6x=6-30\)
\(\Leftrightarrow6x=-24\)
\(\Leftrightarrow x=-4\)
Thay x = 1
=> f(1) = \(\left(1^2+1+2\right)^{20}\)= \(a_0.1^{40}+a_1.1^{39}+a_2.1^{38}+...+a_{39}.1+a_{40}\)
= \(a_0+a_1+a_2+...+a_{39}+a_{40}\)= S
=> S = \(\left(1^2+1+2\right)^{20}\)
=> S = \(4^{20}\)
Bài 1:
\(A=23^2+46\cdot37+37^2=23^2+2\cdot23\cdot37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-44\cdot27+22^2=27^2-2\cdot27\cdot22+22^2=\left(27-22\right)^2=5^2=25\)
Bài 2:
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì: \(\left(x-2\right)^2\ge0\) với mọi x
=> \(\left(x-2\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=2
\(A=23^2+2.23.37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-2.27.22+22^2=\left(27-22\right)^2=5^2=25\)
\(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
=> A min=1 khi x=2
\(A=\frac{x^{39}+x^{36}+x^{33}+...+x^3+1}{x^{40}+x^{38}+x^{36}+...+x^2+1}\)
Đặt \(C=x^{39}+x^{36}+x^{33}+...+x^3+1\)
\(x^3.C=x^{42}+x^{39}+x^{36}+...+x^3\)
\(\left(x^3-1\right)C=x^{42-1}\)
\(C=\frac{x^{42}-1}{x^3-1}\)
Đặt \(D=x^{40}+x^{38}+x^{36}+....+x^2+1\)
\(x^2.D=x^{42}+x^{40}+x^{38}+x^{36}+....+x^2\)
\(\left(x^2-1\right).D=x^{42}-1\)
\(D=\frac{x^{42}-1}{x^2-1}\)
Ta có :
\(C:D=\frac{x^{42}-1}{x^3-1}:\frac{x^{42}-1}{x^2-1}\)
\(C:D=\frac{x^2-1}{x^3-1}\)
\(C:D=\frac{x+1}{x^2+x+1}\)
Ta có : \(A=C:D=\frac{x+1}{x^2+x+1}\)
Vậy ...........
\(18x^2y^2\left(?\right)4x^2y\)
câu b)
\(\left(b\right)6x^3-9x^2=3x^2\left(x-3\right)\)
\(\left(c\right)4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
1
a
3x(x^2-3x+5)
= 3x^3- 9 x^2+15x
b
(3x+2y)(3x-2y)
= (3x)^2- (2y)^2
=9 x^2- 4 y^2
c
4x^2+4x+1:(2x+1)
= (2x+1)^2:(2x+1)
= (2x+1)
1/\(\frac{84^2-16^2}{37^2-63^2}=\frac{\left(84-16\right)\left(84+16\right)}{\left(37-63\right)\left(37+63\right)}=\frac{68.100}{-26.100}=\frac{-68}{26}=\frac{-34}{13}\)
2/ \(199^2=\left(200-1\right)^2=40000-400+1=39601\)
3/ \(31^2=\left(30+1\right)^2=900+60+1=961\)
4/ \(45.55=\left(50-5\right)\left(50+5\right)=50^2-25=2500-25=2475\)
5/ \(78.82=\left(80-2\right)\left(80+2\right)=80^2-4=6400-4=6396\)
\(40^2-39^2+38^2-37^2+..........+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+..........+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...........+\left(2-1\right)\left(2+1\right)\)
\(=40^2+39^2+38^2+37^2+.........+2^2+1^2\)
\(=\dfrac{40.41}{2}=820\)