Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=100
Xét tử N
92-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=(1+1+1+...+1)-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=1-(1/9)+1-(2/10)+1-(3/11)+......+1-(90/98)+1-(91/99)+1-(92/100)
=(8/9)+(8/10)+(8/11)+ ...+ (8/98)+(8/99)+(8/100)
=8.[(1/9)+(1/10)+(1/11)+...+(1/98)+(1/99)+(1/100)]
=40[(1/45)+(1/50)+(1/55)+...+(1/495)+(1/500)]
=>N=40
=>M/N=5/2
A=\(\left(\frac{1}{2^2}-1\right)\)\(\left(\frac{1}{3^2}-1\right)\)\(\left(\frac{1}{4^2}-1\right)\)...\(\left(\frac{1}{98^2}-1\right)\)\(\left(\frac{1}{99^2}-1\right)\)
Do tích A có(99-2)+1=98 thừa số nguyên âm nên tích A dương
A=\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)...\(\frac{97.99}{98^2}\).\(\frac{98.100}{99^2}\)=\(\frac{1.2.3.4.5...97.98.99.100}{2^2.3^3.4^2...98^2.99^2}\)
=\(\frac{1.2.3.4...98}{2.3.4...98.99}.\frac{3.4.5...99.100}{2.3.4...98.99}=\frac{1}{99}.\frac{100}{2}=\frac{50}{99}\)
a.
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)
\(=\frac{1}{2017}\)
b.
\(\frac{2^{50}\times7^2+2^{50}\times7}{4^{26}\times112}=\frac{2^{50}\times\left(7^2+7\right)}{\left(2^2\right)^{26}\times112}=\frac{2^{50}\times\left(49+7\right)}{2^{52}\times2\times56}=\frac{56}{2^3\times56}=\frac{1}{8}\)
a. (1/2-1).(1/3-1)(1/4-1). ... .(1/2017-1)=(-1/2)(-2/3)(-3/4). ... .(-2016/2017)
Vì dãy số có 2016 số hạng âm nên tích của chúng là một số dương.
Ta có:(-1/2)(-2/3)(-3/4). ... . (-2016/2017)=1/2017
Ta thấy : \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
nên kết quả dãy trên bằng 0
1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50
=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+...+1/(99+1).99:2+1/50
=2/2.3+2/3.4+2/4.5+...+2/99.100+1/50
=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50
=2.49/100+1/50=49/50+1/50=1
tick nha ^^
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(A\times2=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow A\times2-A=2-\frac{1}{2^{100}}\)
\(\Rightarrow A=2-\frac{1}{2^{100}}\)
Đặt
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
Lấy A x 2 ta được:
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}\)
\(\frac{A}{2}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}-1\)(thêm 1 ở đầu, bớt 1 ở cuối)
\(\frac{A}{2}=A+\frac{1}{2^{101}}-1\)
\(\frac{A}{2}=1-\frac{1}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{100}}\)