Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
2. Ta có: n + S ( n ) + S ( S (n) ) = 60
Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) )
=> n + n + n \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60
=> 3n \(\ge\)60
=> n \(\ge\)20
=> 20 \(\le\)n \(\le\)60
Đặt: n = \(\overline{ab}\)
=> \(2\le a\le6\)
và \(2+0\le a+b\le5+9\)
=> \(2\le a+b\le14\)
a + b | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
\(\overline{ab}\) | 56 | 54 | 52 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 45 | 43 | 41 |
loại | loại | loại | tm | loại | loại | tm | loại | loại | tm | loại | loại | loại |
Vậy n = 50; n = 44 hoặc n = 47
1. Ta có: a + 3c = 2016 ; a + 2b = 2017
=> a + 3c + a + 2b = 2016 + 2017
=> 2a + 2b + 2c + c = 4033
=> 2 ( a + b + c ) = 4033 - c
mà a, b, c không âm
=> c \(\ge\)0
Để P = a + b + c đạt giá trị lớn nhất
<=> 2 ( a + b + c ) đạt giá trị lớn nhất
<=> 4033 - c đạt giá trị lớn nhất
<=> c đạt giá trị bé nhất
=> c = 0
=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2
Vậy max P = 0 + 2016 + 1/2 = 4033/2
ta có : 803 là số lẻ
=> ( 20a + 7b + 3 )( 20^a + 20a + b ) là số lẻ
=> 20a + 7b + 3 và 20^a + 20a + b là số lẻ
TH1 : nếu a khác 0
=> 20^a + 20a là là số chẵn
mà 20^a + 20a + b là số lẻ ( theo trên )
=> b lẻ
=> 20b + 3 chẵn
=> 20a + 7b + 3 chẵn ( loại )
TH2 : a = 0
=> (7b+3)(b+1) = 803 = 1. 803 = 11.73
vì b thuộc N
=> 7b + 3 > b+1
do đó
7b + 3 = 803 và b +1 = 1 => loại
hoặc 7b+3 = 73 và b +1 = 11 => b = 40
vậy a = 0 và b = 40
Ta có: 4 = 0 + 4 = 1 + 3 = 2 + 2 mà (a+1)^2, (b-1)^2 phải khác 2 và 3. do a, b là số tự nhiên
Vậy ta có:
vậy (a+1)^2 + (b-1)^2 = 0 + 4 = 4 khi a + b = 1 + 1 = 2
(a+1)^2 + (b-1)^2 = 4 + 0 = 4 khi a + b = -1 + 3 = 2