Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác COD ta có :
\(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^o\)
\(\Rightarrow\widehat{COD}=180^o-\left(\widehat{OCD}+\widehat{ODC}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)\)
\(\Rightarrow\widehat{COD}=180^o-\frac{1}{2}\left[360^o-\left(\widehat{BAD}+\widehat{ABC}\right)\right]\)
\(\Rightarrow\widehat{COD}=180^o-180^o+\frac{1}{2}\left(\widehat{A}+\widehat{B}\right)\)
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)( đpcm )
Xét tg CID có
\(\widehat{IDC}+\widehat{ICD}=180^o-\widehat{CID}=180^o-50^o=130^o\)
\(\Rightarrow\widehat{D}+\widehat{C}=2\left(\widehat{IDC}+\widehat{ICD}\right)=2.130^o=260^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(\widehat{C}+\widehat{D}\right)=360^o-260^o=100^o\)
\(\Rightarrow\widehat{A}=\left(100^o+20^o\right):2=60^o\Rightarrow\widehat{B}=100^o-60^o=40^o\)
E A D C B G H I K F O
b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.
Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn
trong tg DIC có
góc CID + góc IDC + góc ICD = 180 độ ( tống các góc của tg)
=>góc IDC + góc ICD = 180 độ - góc CID = 180 độ- 115 độ = 65 độ
góc D + góc C = 2 góc IDC +2 góc ICD = 2(góc IDC + góc ICD) = 2.65= 130 độ
xét tứ giác ABCD có
góc A + góc B + góc C + góc D =360 độ ( tổng 4 góc của tứ giác)
=> góc A + GÓC B = 360 ĐỘ - 130 độ = 230 độ
mà góc A - góc B = 50 độ
do đó ( A + B) +( A- B )= 280 ĐỘ
2A = 280 độ => A = 280/2 = 140 độ
A - B = 50 độ
=> B = 90 độ