Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh
\(\sqrt{x^2+1}+2\sqrt{x}\le\frac{2+\sqrt{2}}{2}\left(x+1\right)\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+2\sqrt{x}\right)^2\le\frac{3+2\sqrt{2}}{2}\left(x+1\right)^2\)
\(\Leftrightarrow\frac{1+2\sqrt{2}}{2}\left(x^2+1\right)-4\sqrt{x\left(x^2+1\right)}+\left(2\sqrt{2}-1\right)x\ge0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-\sqrt{2x}\right)\left(\frac{1+2\sqrt{2}}{2}\sqrt{x^2+1}-\frac{4-\sqrt{2}}{2}\sqrt{x}\right)\ge0\)
BĐT trên luôn đúng do \(x^2+1\ge2x\)
Vậy ta có:\(\text{∑}\sqrt{x^2+1}+2\sqrt{x}\le\text{∑}\frac{2+\sqrt{2}}{2}\left(x+1\right)\le6+3\sqrt{2}\)
Đẳng thức xảy ra khi x=y=z=1
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{1+x^2}+\sqrt{2x})^2\leq (1+x^2+2x)(1+1)\)
\(\Leftrightarrow \sqrt{1+x^2}+\sqrt{2x}\leq \sqrt{2}(x+1)\)
Hoàn toàn tt: \(\left\{\begin{matrix} \sqrt{1+y^2}+\sqrt{2y}\leq \sqrt{2}(y+1)\\ \sqrt{1+z^2}+\sqrt{2z}\leq \sqrt{2}(z+1)\end{matrix}\right.\)
Tiếp tục Bunhiacopxky:
\((\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (x+y+z)(1+1+1)\)
\(\Rightarrow (2-\sqrt{2})(\sqrt{x}+\sqrt{y}+\sqrt{z})\leq (2-\sqrt{2})\sqrt{3(x+y+z)}\)
Cộng theo vế những BĐT vừa thu được:
\(A\leq \sqrt{2}(x+y+z+3)+(2-\sqrt{2})\sqrt{3(x+y+z)}\)
\(\leq 6\sqrt{2}+(2-\sqrt{2}).3=6+3\sqrt{2}\)
Vậy \(A_{\max}=6+3\sqrt{2}\Leftrightarrow x=y=z=1\)
theo đề bài là 2\(\sqrt{x}\) chứ đâu phải \(\sqrt{2x}\) đâu bn
Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)
Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)
Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(a=x\sqrt{x}+2y\sqrt{y}\), \(b=y\sqrt{y}+2z\sqrt{z}\), \(c=z\sqrt{z}+2x\sqrt{x}\)
Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\), \(y\sqrt{y}=\frac{4a+b-2c}{9}\), \(z\sqrt{z}=\frac{4b+c-2a}{9}\)
Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)
\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)
\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)
\(=\frac{2}{9}\left[4.3+3-6\right]=2\)
Vậy \(P\ge2\)
Đẳng thức xảy ra khi x = y = z = 1
ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi
Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)
\(\Rightarrow A\le xyz=1\)
VẬY MAX A=1 TẠI x=y=z=1
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)
\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)
Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)
Theo đề bài ta có
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)
Dấu = xảy ra khi x = y = z = 1
Áp dụng bất đẳng thức Bunhia ta có :
\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)
Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
dấu bằng xảy ra khi x=y=z=1
Đặt \(\sqrt{x}=x;\sqrt{y}=y;\sqrt{z}=z\) cho dễ nhìn.
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=2\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(x\left(1+y^2\right)\left(1+z^2\right)+y\left(1+z^2\right)\left(1+x^2\right)+z\left(1+x^2\right)\left(1+y^2\right)\)
\(=x^2y^2z+y^2z^2x+z^2x^2y+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+x+y+z\)
\(=xyz\left(xy+yz+zx\right)+x^2\left(2-x\right)+y^2\left(2-y\right)+z^2\left(2-z\right)+2\)
\(=-2xyz+2\left(x^2+y^2+z^2\right)-\left(x^3+y^3+z^3-3xyz\right)+2\)
\(=-2xyz+6-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=-2xyz+6-2=-2xyz+4\)
Ta lại có:
\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)=x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2+1\)
\(=x^2y^2z^2+\left(xy+yz+zx\right)^2-2xyz\left(xy+yz+zx\right)+3\)
\(=x^2y^2z^2-2xyz+4=\left(xyz-2\right)^2\)
\(\Rightarrow A=\sqrt{\left(xyz-2\right)^2}.\frac{4-2xyz}{\left(xyz-2\right)^2}\)
Tới đây bí :((
Ta có BĐT sau: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng, ta được: \(\left(\sqrt{x^2+1}+\sqrt{2x}\right)^2\le2\left(x^2+1+2x\right)=2\left(x+1\right)^2\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)(1)
Tương tự, ta có: \(\sqrt{y^2+1}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)(2); \(\sqrt{z^2+1}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)(3)
Theo BĐT Cauchy-Schwarz, ta được: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le\left(1+1+1\right)\left(x+y+z\right)\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\)
\(\Rightarrow\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)(Nhân 2 vế của bất đẳng thức với \(2-\sqrt{2}>0\)) (4)
Cộng theo vế của 4 BĐT (1), (2), (3), (4), ta được:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)(Do theo giả thiết thì \(x+y+z\le3\))
hay \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le6+3\sqrt{2}\)
Đẳng thức xảy ra khi x = y = z = 1
Vậy giá trị lớn nhất của biểu thức là \(6+3\sqrt{2}\), đạt được khi x = y = z = 1