K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{10^2}< \dfrac{1}{9\cdot10}=\dfrac{1}{9}-\dfrac{1}{10}\)

Do đó: \(E=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

=>\(E< 1-\dfrac{1}{10}\)

=>E<1

21 tháng 5 2017

d)

đặt A = 1 + 2 + 22 + ... + 280 

2A = 2 + 22 + 23 + ... + 281

2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )

A = 281 - 1 > 281 - 2

e) 

đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)

\(=1-\frac{1}{30}=\frac{29}{30}< 1\)

\(\Rightarrow A< 29\)

30 tháng 9 2020

So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12

29 tháng 3 2016

Nhân E với 4, rút gọn phân số là số hạng của 4E. Lấy 4E trừ đi E, bạn tìm được 3E = 1 - 1/410  < 1 => E < 1 (đpcm).

29 tháng 3 2016

Ta có 

4E=\(1+\frac{1}{4}+....+\frac{1}{4^9}\)

4E-E= \(1-\frac{1}{4^{10}}\)<1

<=> E=\(\left(1-\frac{1}{4^{10}}\right):3<1\)

Vậy E<1

---------------

Thấy đúng thì k nhé

9 tháng 4 2016

(a+b+c)2=a2+b2+c2+2ab+2cb+2ac>a2+b2+c2

(a+b+c)2/3>(a2+b2+c2)/3

9 tháng 4 2016

ta có                 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

tương đương    \(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

cộng 2 vế với a2+b2+c2, ta có\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

chia cả 2 vế cho 9,ta có bđt cần chứng minh

18 tháng 12 2017

giúp mình với mai phải nộp rồi

4 tháng 3 2016

ta có:

 \(\frac{1}{11}\)>\(\frac{10}{20}\)

\(\frac{1}{12}\)>\(\frac{10}{20}\)

\(\frac{1}{13}\)>\(\frac{10}{20}\)

....

\(\frac{1}{19}\)>\(\frac{10}{20}\)

=>E >\(\frac{10}{20}\)

vậy E > \(\frac{1}{2}\)