K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2024

2.(\(\dfrac{3}{4}\))\(x\) - \(\dfrac{3}{8}\) = (\(\dfrac{3}{4}\))\(x-1\)

2.(\(\dfrac{3}{4}\))\(x\) - (\(\dfrac{3}{4}\))\(^{x-1}\) = \(\dfrac{3}{8}\)

  (\(\dfrac{3}{4}\))\(^{x-1}\).[2.\(\dfrac{3}{4}-1\)] = \(\dfrac{3}{8}\)

  \(\left(\dfrac{3}{4}\right)\)\(^{x-1}\).\(\dfrac{1}{2}\) = \(\dfrac{3}{8}\)

          (\(\dfrac{3}{4}\))\(^{x-1}\) = \(\dfrac{3}{8}\) : \(\dfrac{1}{2}\)

         (\(\dfrac{3}{4}\))\(^{x-1}\) = \(\dfrac{3}{4}\)

           \(x-1\) = 1

                 \(x=1+1\)

                 \(x=2\)

Vậy \(x=2\) 

 

        

 

11 tháng 10 2017

\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)

<=> \(\frac{x-2}{7}.\frac{x+3}{5}.\frac{x+4}{3}=0\)

<=> \(\frac{x-2}{7}=0\)hoặc \(\frac{x+3}{5}=0\)\(\frac{x+4}{3}=0\)

Nếu \(\frac{x-2}{7}=0\)<=> \(x-2=0\)<=> \(x=2\)
Nếu \(\frac{x+3}{5}=0\)<=> \(x+3=0\) <=> \(x=3\)

Nếu \(\frac{x+4}{3}=0\)<=> \(x+4=0\)<=> \(x=4\)

Vây x= 2 hoặc 3; 4

22 tháng 9 2019

1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x

<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x

<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x

<=>1/2^19=1/2^x=>x=19

22 tháng 9 2019

Đề mình không ghi lại nhé.

\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)

\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)

\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)

\(\Rightarrow2^{15}\times2^5=2^{x+1}\)

\(\Rightarrow2^{20}=2^{x+1}\)

\(\Rightarrow x+1=20\Rightarrow x=19\)

Vậy \(x=1\)

Học tốt nhaaa!

18 tháng 11 2019

A.  2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)

     2.\(|3x+1|\)=1/8

        \(|3x+1|\)=1/8:2

        \(|3x+1|\)=1/16

TH1 : 3x+1=1/16

         3x=1/16-1

         3x=-15/16

         x=-15/16:3

          x=-5/16

18 tháng 11 2019

a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)

\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)

\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)

\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)

                                          \(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)

Vậy....

b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)

Ta có bảng xét dấu

x                    \(\frac{-2}{3}\)                             3
3x+2                 -             0             +                    |               +
x-3           -              |                 -                    0          +

Nếu x<\(\frac{-2}{3}\)       thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)

                                                                         \(=-2x-5\)

Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)

          \(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)

           \(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)

Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)

                                                                                \(=3x+2-3+x\)

                                                                                 \(=2x-1\)

Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)

    \(\Rightarrow2x=\frac{9}{2}\)

      \(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......

Còn trưonwfg hợp cuối bạn tự làm nốt nhé

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

17 tháng 10 2021

undefined

24 tháng 9 2020

Ơ,thế đề bài là \(4-\frac{1}{3}=x\) à?

\(4-\frac{1}{3}=\frac{4\times3-1}{3}=\frac{11}{3}\)

24 tháng 9 2020

\(\frac{4}{5}+\frac{1}{6}-\frac{4}{9}=\frac{29}{30}-\frac{4}{9}=\frac{87}{90}-\frac{40}{90}=\frac{11}{30}\)

\(\frac{2}{3}-\frac{1}{4}=\frac{8}{12}-\frac{3}{12}=\frac{5}{12}\)

\(\frac{5}{12}=\frac{150}{360};\frac{11}{30}=\frac{132}{360}\)

\(x=\frac{19}{360}\)

9 tháng 10 2019

\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)

\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)

\(\rightarrow10x+80+15x+105=-6x\)

\(\Leftrightarrow31x+185=0\)

\(\Leftrightarrow x=-\frac{185}{31}\)

b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)

\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)

\(\rightarrow20x-160+15x-105=240+12-12x\)

\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)

13 tháng 8 2019

+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)

\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)

+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)

\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)

Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)

Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)