Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+2y^2-x^2y-2xy=\left(x^3-x^2y\right)+\left(2y^2-2xy\right)=x^2\left(x-y\right)+2y\left(y-x\right)=\left(x-y\right)\left(x^2-2y\right)\)
b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)
\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)
\(=3-6xy-2-6xy=-12xy+1\)
c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)
\(=101^2-3\cdot101^2+3\cdot101+2012\)
=1002013
P = 3x2 - 2x + 3y2 - 2y + 6xy +2018
P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018
P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018
P = 3[ 52 +0] - 10 + 2018
P = 3.25 + 2008
P = 75 + 2008
P = 2083
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)=\(\frac{-\left(x^2-y^2\right)}{\left(x-y\right)^3}\)= \(\frac{-\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^3}\)= \(\frac{-x-y}{\left(x-y\right)2}\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(x-y\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(y+x\right)}{\left(x-y\right)^2}\)
phân tích đa thức thành nhân tử à bạn :)))
\(x^3-x+3x^2y+3xy^2-y\)
\(=x\left(x-1\right)+3x^2y+3xy\left(y-1\right)\)
\(=x\left(x-1+3xy+3y^2-3y\right)\)
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)
\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)
\(=21^3+3.21-3.21^2+2016\)
\(=\left(21-1\right)^3+2017=8000+2017=10017\)
Mình không viết lại đề nha ~
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)
\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)
\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)
\(E=21\left(21^2+3+21\right)+2016\)
\(E=21.465+2016\)
\(E=9765+2016=11781\)
a) 5x - 5y + ax - ay = 5(x - y) + a(x - y)
= (5 + a)(x - y)
b) x3 - x + 3x2y + 3xy2 + y3 - y
= (x3 + 3x2y + 3xy2 + y3) - (x + y)
= (x + y)3 - (x + y)
= (x + y)[(x + y)2 - 1]
= (x + y)(x + y + 1)(x + y - 1)
c) x2 - 2x - 3 = x2 + x - 3x -3
= x(x + 1) - 3(x + 1)
= (x - 3)(x + 1)
e) 6x - 9 - x2 = 3x - 9 + 3x - x2
= 3(x - 3) + x(3 - x)
= 3(x - 3) - x(x - 3)
= (3 - x)(x - 3)
\(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 - \(x-y\)
= (\(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3) - (\(x+y\))
= (\(x+y\))3 - (\(x+y\))
= (\(x+y\))[(\(x+y\))2 - 1]
= (\(x+y\))[\(x+y-1\)][\(x+y+1\)]
cứu tuii ii mn :<