Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-36=0\Rightarrow x^2=36\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(3x^2-75=0\)
\(\Rightarrow3\left(x^2-25\right)=0\)
\(\Rightarrow x^2-25=0\Rightarrow x^2=25\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(4x^2-4x+1=0\)
\(\Rightarrow\left(2x-1\right)^2=0\)
\(\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
\(\left(x+3\right)^2-4=0\)
\(\Rightarrow\left(x+3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
a) \(x^2-36=0\Leftrightarrow x^2=36\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{36}\\x=-\sqrt{36}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
vậy \(x=6;x=-6\)
b) \(3x^2-75=0\Leftrightarrow3\left(x^2-25\right)=0\Leftrightarrow x^2-25=0\Leftrightarrow x^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{25}\\x=-\sqrt{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\) vậy \(x=5;x=-5\)
c) \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)
d) \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x+3=\sqrt{4}\\x+3=-\sqrt{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\) vậy \(x=-1;x=-5\)
a/ \(\left(x-4\right)^2-36=0\)
<=> \(\left(x-4-6\right)\left(x-4+6\right)=0\)
<=> \(\left(x-10\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
b/ \(\left(x+8\right)^2=121\)
<=> \(\left(x+8\right)^2-121=0\)
<=> \(\left(x+8-11\right)\left(x+8+11\right)=0\)
<=> \(\left(x-3\right)\left(x+19\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\x+19=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=3\\x=-19\end{cases}}\)
d/ \(4x^2-12x+9=0\)
<=> \(\left(2x\right)^2-2.2x.3+3^2=0\)
<=> \(\left(2x-3\right)^2=0\)
<=> \(2x-3=0\)
<=> \(x=\frac{3}{2}\)
4x(x-2005)-(x+2005)=0
4x(x-2005)+(x-2005)=0
(x-2005)(4x+1)=0
<=>x-2005=>x=2005
4x+1=0=>x=-1/4
b, (x+1)2-x-1=0
(x+1)2-(x+1)=0
(x+1)(x+1-1)=0
(x+1)x=0
<=>x+1=0=>x=-1
x =0
a)\(x^2-2x-24=0\Leftrightarrow x^2-2x+1-25=0\)
\(\Leftrightarrow\left(x-1\right)^2-5^2=0\Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)
b)\(x^2+8x+12=0\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-2^2=0\Leftrightarrow\left(x+4-2\right)\left(x+4+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\hept{\begin{cases}x=-2\\x=-6\end{cases}}\)
c)\(4x^2+4x-63=0\Leftrightarrow4x^2+4x+1-64=0\)
\(\Leftrightarrow\left(2x+1\right)^2-8^2=0\Leftrightarrow\left(2x+1-8\right)\left(2x+1+8=0\right)\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+9\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{9}{2}\end{cases}}\)
Bài 1 :
a, \(\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)
=> \(\left(x-3\right)\left(4x-1-5x-2\right)=0\)
=> \(\left(x-3\right)\left(-x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\-x-3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=\pm3\) .
b, \(\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\)
=> \(\left(x+3\right)\left(x-5+3x-4\right)=0\)
=> \(\left(x+3\right)\left(4x-9\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=-3,x=\frac{9}{4}\) .
c, \(\left(x+6\right)\left(3x-1\right)+x^2-36=0\)
=> \(\left(x+6\right)\left(3x-1\right)+\left(x-6\right)\left(x+6\right)=0\)
=> \(\left(x+6\right)\left(3x-1+x-6\right)=0\)
=> \(\left(x+6\right)\left(4x-7\right)=0\)
=> \(\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=-6,x=\frac{7}{4}\) .
a) ( 4x - 1 ) ( x - 3 ) - ( x - 3 ) ( 5x + 2 ) = 0
⇔ ( x - 3 ) ( 4x - 1 - 5x - 2 ) = 0
⇔ ( x - 3 ) ( -x - 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Ý b) tương tự ý a) thôi.
c) ( x + 6 ) ( 3x - 1 ) + x2 - 36 = 0
⇔ ( x + 6 ) ( 3x - 1 ) + ( x + 6 ) ( x - 6 ) = 0
⇔ (x+6)(3x-1+x-6)=0
⇔ (x+6)(4x-7)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
a) \(\left(x+17\right).\left(25-x\right)=0\)
\(\Leftrightarrow x+17=0\)hoặc \(25-x=0\)
Từ \(x+17=0\Rightarrow x=0-17=-17\)
Từ \(25-x=0\Rightarrow x=25-0=25\)
Vậy \(x=-17\) hoặc \(25\)
a) ( 4x - 1 ) ( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};2\right\}\)
b) 4x2 - 12x = 0
<=> 4x ( x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
c) ( x - 5 )4 + 25 - x2 = 0
( x - 5 ) 4 + ( 5 - x ) ( 5 + x ) = 0
( x - 5 ) ( 4 + 5 + x ) = 0
( x - 5 ) ( 9 + x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\9+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-9\end{cases}}\)
Vậy \(x\in\left\{-9;5\right\}\)
\(4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}=3\\x=-\dfrac{6}{2}=-3\end{matrix}\right.\)
\(4x^2-36=0\)
\(4x^2\) \(=0+36\)
\(4x^2\) \(=36\)
\(x^2\) \(=36:4\)
\(x^2\) \(=9\)
\(x^2\) \(=3^2\)
\(=>x=3\)
Vậy...