K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 9 2024

\(x^2-y^2+6y=10\\ \Leftrightarrow x^2-\left(y^2-6y+9\right)=1\\ \Leftrightarrow x^2-\left(y-3\right)^2=1\\ \Leftrightarrow\left(x+y-3\right)\left(x-y+3\right)=1\)

Bổ sung đề: Tìm x, y nguyên

Do đó x+y-3 và x-y+3 cũng là các giá trị nguyên

Mà: 1=1.1=(-1).(-1)

TH1: \(x+y-3=x-y+3=1\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\x-y=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=1\end{matrix}\right.\) (nhận)

TH2: \(x+y-3=x-y+3=-1\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\x-y=-4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\) (nhận)

Vậy (x;y)=(1;3);(-1;3)

6 tháng 9 2024

Sửa đề: Tìm x, y nguyên

\(x^2-y^2+6y=10\\ \Leftrightarrow x^2-\left(y^2-6y+9\right)=10-9\\ \Leftrightarrow x^2-\left(y-3\right)^2=1\\ \Leftrightarrow\left(x-y+3\right)\left(x+y-3\right)=1\)

Vì x, y nguyên nên \(x-y+3;x+y-3\) có giá trị nguyên

\(\Rightarrow x-y+3;x+y-3\) là các ước của 1. Ta có các trường hợp sau:

\(+,\left\{{}\begin{matrix}x-y+3=1\\x+y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-2\\x+y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\left(tm\right)\\y=3\left(tm\right)\end{matrix}\right.\)

\(+,\left\{{}\begin{matrix}x-y+3=-1\\x+y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-4\\x+y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\left(tm\right)\\y=3\left(tm\right)\end{matrix}\right.\)

Vậy: ...

3 tháng 8 2017

\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)

vậy \(x=-1;y=-3\)

4 tháng 8 2016

1.

\(P=x^2+6y+10+y^2-x\)

\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(y+3\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)

2.

\(N=x-x^2\)

\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)

Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

20 tháng 12 2019

Ta có: M = x2 + 6y + 10 + y2 - x

          M = ( x2 - x + 1/4 ) + ( y+ 6y + 9) + 3/4

          M = ( x - 1/2)2 + ( y + 3 )2 + 3/4

- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.

Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0

                  <=> x = 1/2 và y = -3.

12 tháng 7 2016

\(x^2+y^2-2x+6y+10=0\)

\(\Leftrightarrow x^2-2x+1+y^2+6y+3=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

12 tháng 7 2016

bạn ơi 1 và 3 ở đâu v bn

22 tháng 5 2016

M=x2-2.x.1/2+(1/2)2-(1/2)2 +y2-2.y.3+32-32+10

M=(x-1/2)2-1/4+(y-3)2-9+10

M=(x-1/2)+(y-3)2+3/4 luon >=3/4

Vậy: GTNN cua M la 3/4 khi x=1/2 và y=3

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

13 tháng 9 2016

(x-1/2)2 + (y + 3)2 -1/4 +10 -9

GTNN = 3/4

(giải theo pp học vnen)