Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+3+32+33+...+399
A= (1+3+32+33)+...+(396+397+398+399)
A= (1+3+32+33)+...+396(1+3+32+33)
A= 40 + ... + 399.40
Vì 40 chia hết cho 40 nên A chia hết cho 40
Chúc bn học tốt
\(A=1+3+3^2+...+3^{99}=\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40+...+3^{99}.40=40\left(1+3^{99}\right)⋮40\)
Vậy ta có đpcm
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^{99}}< 1\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)
\(a,80:\left\{\left[\left(11-2\right)\cdot2\right]+2\right\}\)
\(=>80:\left\{\left[9\cdot2\right]+2\right\}\)
\(=>80:\left\{18+2\right\}\)
\(=>80:20\)
\(=>4\)
\(b,60:\left\{\left[\left(12-3\right)\cdot2\right]+2\right\}\)
\(=>60:\left\{\left[9\cdot2\right]+2\right\}\)
\(=>60:\left\{18+2\right\}\)
\(=>60:20\)
\(=>3\)
chuc ban hoc tot :))
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
a) \(18\div3^2+5\times2^2=18\div9+5\times4=2+20=22\).
b) \(\left(-12\right)+42=30\).
c) \(53\times25+53\times75=53\times\left(25+75\right)=53\times100=5300\).
\(\dfrac{1}{2}-\left[\dfrac{2}{3}x\cdot\left(-\dfrac{1}{3}\right)\right]=\dfrac{2}{3}\\ \dfrac{2}{3}x\cdot\left(-\dfrac{1}{3}\right)=-\dfrac{1}{6}\\ \dfrac{2}{3}x=\dfrac{1}{2}=>x=\dfrac{3}{4}\)
\(\frac12\) - (\(\frac23\) \(\times\) \(x\) - \(\frac13\)) = \(\frac23\)
\(\frac23\times\) \(x\) - \(\frac13\) = \(\frac12\) - \(\frac23\)
\(\frac23\times\) \(x\) = \(\frac13\) - \(\frac23+\frac12\)
\(\frac23\times\) \(x\) = - \(\frac13\) + \(\frac12\)
\(\frac23\) \(\times\) \(x\) = - \(\frac26+\frac36\)
\(\frac23\times\) \(x\) = \(\frac16\)
\(x=\frac16:\frac23\)
\(x\) = \(\frac14\)
vậy \(x=\frac14\)