Cho 5x-2=2. Tìm Min B = 2018+4x2+3y2
(mình đang cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 ( x+ 2y) -x -2y
= x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)3x2- 3y2 -2 (x-y)2
= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\\ =\left(x-y\right)\left(3x+3y-2x+2y\right)\\ =\left(x-y\right)\left(x+5y\right)\)
c) x2- 2x-4y2 - 4y
= (x2-4y2)-(2x+4y)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\left(x-2y-2\right)\)
d) x3 - 4x2 - 9x +36
= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
\(=\left[\left(x^2-3x\right)-\left(4x-12\right)\right]\left(x+3\right)\\ =\left[x\left(x-3\right)-4\left(x-3\right)\right]\left(x+3\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
a: ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
`#3107.101107`
a)
`x^2 + 6x + 10`
`= (x^2 + 2*x*3 + 3^2) + 1`
`= (x + 3)^2 + 1`
Vì `(x + 3)^2 \ge 0` `AA` `x`
`=> (x + 3)^2 + 1 \ge 1` `AA` `x`
Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`
`<=> x + 3 = 0`
`<=> x = -3`
b)
`4x^2 - 4x + 5`
`= [(2x)^2 - 2*2x*1 + 1^2] + 4`
`= (2x - 1)^2 + 4`
Vì `(2x - 1)^2 \ge 0` `AA` `x`
`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`
Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`
`<=> 2x - 1 = 0`
`<=> 2x = 1`
`<=> x = 1/2`
c)
`x^2 - 3x + 1`
`= (x^2 - 2*x*3/2 + 9/4) - 5/4`
`= (x - 3/2)^2 - 5/4`
Vì `(x - 3/2)^2 \ge 0` `AA` `x`
`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`
Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`
`<=> x - 3/2 = 0`
`<=> x = 3/2`
Ta có: 7x2+8xy+7y2=10 (*)
=>4x2+8xy+4y2+3x2+3y2=10
=>4(x+y)2+3(x2+y2)=10
=>3(x2+y2)=10-4(x+y)2
Vậy A lớn nhất khi (x+y)2=0=>x=-y
Amax=10/3
Áp dụng bất đẳng thức Cosy cho 2 số dương ta có:
A=x2+y22xy,
=> Amin khi x=y
Thay vào (*) ta được:
7x2+8x2+7x2=10
=>22x2=10
=>x2=10/22
=> y2=10/22
=>Amin=10/22+10/22=10/11.
Vậy Amin=10/3<=> x=-y
Amax=10/11<=>x=y.
Mình thấy hình như bạn ghi thiếu điều kiện hãy điều kiện bị sai nhưng vẫn làm thử
Ta có 5x-2=2
B= 2016–2 +5x+4x^2+3y^2
= (2x+1)^2+3y^2+2013 ≥ 2013
Vậy min B là 2013 khi x=-1/2 và y=0
Xin lỗi bạn nếu có gì sai thì vì cái điều kiện hơi bị sai
Cảm ơn bạn nhiều nha!!