K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2019

\(x\ne0\)

Đặt \(\frac{x^2+1}{x}=a\Rightarrow\frac{x}{x^2+1}=\frac{1}{a}\) phương trình trở thành:

\(a+\frac{1}{a}=-\frac{5}{2}\)

\(\Leftrightarrow2a^2+5a+2=0\)

\(\Leftrightarrow\left(2a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-2\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x^2+1}{x}=-2\\\frac{x^2+1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\2x^2+x+2=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=-1\)

27 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)

\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)

\(\Leftrightarrow3x^2-17x+24=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)

\(\Leftrightarrow x=3;x=\frac{8}{3}\)

Vậy tập nghiệm của phương trình  là \(S=\left\{3;\frac{8}{3}\right\}\)

18 tháng 4 2020

\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)

=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)

lại có x+1>x-2 => x-2<0 và x+1>0

=> -1<x<2

học tốt

19 tháng 4 2020

Cho mình làm lại nha:

\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)

\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)

ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2

đọc lộn xíu xin lỗi nha

học tốt

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

ĐK x >0

\(PT\Leftrightarrow2x+2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}.\)

\(\Leftrightarrow2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}-2x\)

\(\Leftrightarrow x^2-\frac{1}{x^4}=\frac{4}{x^4}-\frac{4}{x}+x^2\)(chia cả 2 vế cho 2)

\(\Leftrightarrow\frac{5}{x^4}-\frac{4}{x}=0\Leftrightarrow5-4x^3=0\Leftrightarrow4x^3=5\)

\(\Leftrightarrow x^3=\frac{5}{4}\Leftrightarrow x=\sqrt[3]{\frac{5}{4}}\)

Vậy................................

9 tháng 1 2019

\(\frac{7x-\frac{x-3}{2}}{5}-x+1nha.Mình,nhầm\)

9 tháng 1 2019

Anh ko ghi lại đề nha em gái ! 

\(\Leftrightarrow\frac{\left(\frac{10x-4+5x}{5}\right)}{15}=\frac{\left(\frac{14x-x+3}{2}\right).x}{5}+1\)

\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{13x^2+3x}{2}\right)}{5}+1\)

\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{39x^2+9x}{2}\right)+15}{15}\)

\(\Leftrightarrow\frac{15x-4}{5}=\frac{39x^2+9x+30}{2}\)

\(\Leftrightarrow2.\left(15x-4\right)=5.\left(39x^2+9x+30\right)\)

\(\Leftrightarrow30x-8=195x^2+45x+150\)

\(\Leftrightarrow-195x^2-15x-158=0\)

\(\left(a=-195;b=-15;c=-158\right)\)

\(\Delta=b^2-4ac\)

\(=\left(-15\right)^2-4.\left(-195\right).\left(-158\right)=-123015< 0\)

Vì \(\Delta< 0\) nên phương trình vô nghiệm. 

Nếu có gì thắc mắc về bài này cứ hỏi anh ! 

15 tháng 9 2018

\(\frac{x^2-5x+4}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{x^2-x-4x+4}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{x\left(x-1\right)-4\left(x-1\right)}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{\left(x-1\right)\left(x-4\right)}{x^2-2}=5\left(x-1\right)\)

Với x = 1

=> x - 1 = 0

=> \(\frac{0.\left(x-4\right)}{x^2-2}=5.0\)

=> 0 = 0 ( luôn đúng )

Với x khác 1

=> x - 1 khác 0

=> \(\frac{x-4}{x^2-2}=5\)( chia cả hai vế cho x - 1 )

=> \(x-4=5x^2-10\)

=> \(5x^2-x-6=0\)

=> \(5x^2+5x-6x-6=0\)

=> \(5x\left(x+1\right)-6\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(5x-6\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}}\)

Vậy  \(x\in\left\{1;-1;\frac{6}{5}\right\}\)

b) \(x^2+6x+9=144\)

\(\Leftrightarrow\left(x+3\right)^2=12^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)

3 tháng 3 2020

b, Ta có : \(x^2+6x+9=144\)

=> \(\left(x+3\right)^2=12^2\)

=> \(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{9,-15\right\}\)

c, Ta có : \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

=> \(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{-x}{2018}\)

=> \(\frac{2-x}{2016}+1=\frac{1-x}{2017}+1+\frac{-x}{2018}+1\)

=> \(\frac{2-x}{2016}+\frac{2016}{2016}=\frac{1-x}{2017}+\frac{2017}{2017}+\frac{-x}{2018}+\frac{2018}{2018}\)

=> \(\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

=> \(\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

=> \(\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

=> \(2018-x=0\)

=> \(x=2018\)

Vậy phương trình có tập nghiệm là \(S=\left\{2018\right\}\)

24 tháng 3 2020

\(ĐKXĐ:x\ne1;5;9\)

\(pt\Leftrightarrow\frac{2x-1}{\left(x-1\right)\left(x-5\right)}+\frac{\left(x-2\right)}{\left(x-1\right)\left(x-9\right)}=\frac{3x-12}{\left(x-9\right)\left(x+5\right)}\)

\(\Rightarrow\left(2x-1\right)\left(x-9\right)+\left(x-2\right)\left(x-9\right)=\left(3x-12\right)\left(x-1\right)\)

\(=>2x^2-x-18x+9+x^2-2x+5x-10=3x^2-12-3x+12\)

\(=>3x^2-16x-1=3x^2-15x+12\)

=>x=-13