Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\)
\(=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\left(\frac{1}{a^2+ab}+\frac{1}{b^2+ab}\right)+\frac{1}{2ab}\)
\(\ge\frac{\left(1+1\right)^2}{a^2+2ab+b^2}+\frac{\left(1+1\right)^2}{a^2+ab+b^2+ab}+\frac{2}{\left(a+b\right)^2}\)
\(=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge\frac{4}{1}+\frac{4}{1}+\frac{2}{1}=10\)
Dấu = xảy ra khi a = b = \(\frac{1}{2}\)
n5−n=n(n4−1)=n(n2−1)(n2+1)n5−n=n(n4−1)=n(n2−1)(n2+1)
=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)
=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)
=n(n−1)(n+1)(n−2)(n+2)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)5n(n−1)(n+1)
--Vì n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)là tích của 5 số nguyên liên tiếp
=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 2;3;5
=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 30 (*)
-- vì n(n−1)(n+1)n(n−1)(n+1) là tích của 3 số nguyên liên tiếp
⇒n(n−1)(n+1)⇒n(n−1)(n+1) chia hết cho 2; 3
⇒n(n−1)(n+1)⋮6⇒n(n−1)(n+1)⋮6
=> 5n(n−1)(n+1)⋮5.6=305n(n−1)(n+1)⋮5.6=30 (**)
từ * và ** => n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30
hay n5−n⋮30(đpcm)
like nhoa !!
\(A=\left(15+1+4\right)-\left(x^2+y^2+1^2+2xy-2x-2y\right)-\left(y^2+4y+4\right)\)
\(A=20-\left(x+y-1\right)^2-\left(y+2\right)^2\)
\(A\ge20\) đẳng hức khi: \(\left\{\begin{matrix}y+2=0\\x+y-1=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}y=-2\\x=3\end{matrix}\right.\)