Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
A = |2x - 2| + |2x - 2013|
= |2x - 2| + |2013 - 2x| \(\ge\) |2x - 2 + 2013 - 2x| = 2011
Dấu "=" xảy ra khi: (2x - 2).(2013 - 2x) \(\ge\) 0
Trường hợp 1: \(\hept{\begin{cases}2x-1\ge0;2013-2x\ge0\\x\ge\frac{1}{2};x\ge\frac{2013}{2}\end{cases}}\)
=> x \(\ge\) 2013/2
Trường hợp 2: \(\hept{\begin{cases}2x-1\le0;2013-2x\le0\\x\le\frac{1}{2};x\le\frac{2013}{2}\end{cases}}\)
=> x \(\ge\)1/2
Từ Trường hợp 1:
=> Ko có giá trị nào thỏa mãn yêu cầu của đề bài
A=I 2x+2 I + I 2x-2013I =I2x+2I +I2013- 2 xI >= I2x+2+2013- 2x I=2015
Vậy min A=2015
Phần còn lại bạn tự làm
Chúc bạn học tốt
\(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(A=\left|2x-2\right|+\left|2013-2x\right|\)
\(A\ge\left|2x-2+2013-2x\right|\)
\(A\ge2011\)Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
A=|2x-2|+|2x-2013|
ta có |2x-2|=|2-2x|>hoặc=2-2x
. |2x-2013|>hoặc=2x-2013
=) A> hoặc = 2-2x+2x-2013
A> hoặc = -2011
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(A=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)
Để \(A\)nhỏ nhất thì \(\frac{5}{x+2}\)lớn nhất mà \(x\)nguyên nên \(x+2\)đạt giá trị nguyên dương nhỏ nhất
suy ra \(x+2=1\Leftrightarrow x=-1\).
Vậy \(minA=\frac{2\left(-1\right)-1}{-1+2}=-3\).
a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)
Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)
Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)
Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)
Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)
Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:
\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)