K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

Answer:

a. \(ĐKXĐ:x^2-9\ne0\Rightarrow x^2\ne9\Rightarrow x\ne\pm3\)

b. \(A=\frac{x^2-6x+9}{x^2-9}=\frac{\left(x-3\right)^2}{\left(x-3\right).\left(x+3\right)}=\frac{x-3}{x+3}\)

c. \(A=7\)

\(\Rightarrow\frac{x-3}{x+3}=7\)

\(\Rightarrow x-3=7.\left(x+3\right)\)

\(\Rightarrow x-3=7x+21\)

\(\Rightarrow x-3-7x-21=0\)

\(\Rightarrow-6x-24=0\)

\(\Rightarrow x=-4\)

2 tháng 1 2021

cảm ơn bạn nhiều.

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

12 tháng 12 2018

\(a,ĐKXĐ\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow x\ne\pm3}\)

Ta có: \(M=\frac{3}{x-3}-\frac{6x}{9-x^2}+\frac{x}{x+3}\)

            \(=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)

           \(=\frac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

            \(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

             \(=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

              \(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

              \(=\frac{x+3}{x-3}\)

\(b,x=\frac{1}{2}\Rightarrow M=\frac{\frac{1}{2}+3}{\frac{1}{2}-3}=-\frac{7}{5}\)

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

3 tháng 12 2018

a) Để phân thức trên xác định \(\Leftrightarrow x^3-8\ne0\Leftrightarrow x\ne2\)

b) \(\frac{3x^2+6x+12}{x^3-8}\)

\(=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{3}{x-2}\)

26 tháng 12 2019

a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) Thay x = -4 vào phân thức đã thu gọn, ta có:

 \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

Vậy: tại x = -4 là \(\frac{8}{7}\)

28 tháng 12 2019

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)

ĐKXĐ: \(x\ne\pm3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

27 tháng 1 2017

a, ĐKXĐ : \(x^2+2x+1\ne0=>\left(x+1\right)^2\ne0\)

=> \(x\ne-1\)

b, Ta có \(B=\frac{x^2+2x+1}{x^2-1}\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

c, Đề P =0

<=> \(\left(x+1\right)^2=0\)

=> x=-1

27 tháng 1 2017

a/ x khác cộng trừ 1

b/ B= 1/(x-1)

c/ vô nghiệm