K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Cách khác:Từ giả thiết:\(c^2=ab\Rightarrow\frac{a}{c}=\frac{c}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

Vậy ta có điều phải chứng minh

23 tháng 12 2017

a/ Thay \(c^2=ab\) ta dc :

\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)

10 tháng 10 2020

tham khảo trên vietjack.com í

27 tháng 9 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(3)

Từ (1),(2),(3) =>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)(đpcm)

18 tháng 12 2017

a) \(\frac{a}{c}=\frac{c}{b}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

b) \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow ab=c^2\)

\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{\left(b-a\right)b+\left(b-a\right)a}{a.\left(a+b\right)}=\frac{\left(b-a\right)\left(b+a\right)}{a.\left(a+b\right)}=\frac{b-a}{a}\)

22 tháng 2 2019

cho mk hỏi viết phan số bằng cách nào vậy

12 tháng 12 2016

CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)

THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)

6 tháng 1 2017

Câu 1:

Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\) 

=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)  

Câu 2:

Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)

=>\(ab=c^2\)

Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)

\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)

=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)

MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!

k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều. 

16 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\left(3\right)\)

    Ta có:\(\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

              \(\frac{c^2-d^2}{cd}=\frac{k^2d^2-d^2}{d^2k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2) suy ra:đpcm

b)\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

Từ (3) ta được:\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{b^2k^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(4\right)\)

                       \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{d^2k^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(5\right)\)

Từ (4) và (5) ta được đpcm

6 tháng 4 2016

a) VT=a2+c2/b2+c2=a2+ab/b2+ab=a(a+b)/b(a+b)=a/b=VP

b) VT=b2-a2/a2+c2=(b-a)(b+a)/a2+ab=(b-a)(a+b)/a(a+b)=(b-a)/a=VP

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

10 tháng 11 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{\left(bk\right)^2-b^2}{kb^2}=\frac{\left(dk\right)^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2.k^2-b^2}{kb^2}=\frac{d^2.k^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2\left(k^2-1\right)}{kb^2}=\frac{d^2\left(k^2-1\right)}{kd^2}\)

\(\Rightarrow\frac{k^2-1}{k}=\frac{k^2-1}{k}\left(đpcm\right)\)

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó