K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

a) Xét 2 \(\Delta\) \(AMD\)\(CMB\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MD=MB\left(gt\right)\)

=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)

=> \(AD=BC\) (2 cạnh tương ứng).

b) Xét 2 \(\Delta\) \(BMA\)\(DMC\) có:

\(BM=DM\left(gt\right)\)

\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MA=MC\) (vì M là trung điểm của \(AC\))

=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(\widehat{DCM}=90^0.\)

=> \(CD\perp MC\)

Hay \(CD\perp AC.\)

c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD\)

Hay \(AB\) // \(CN.\)

Có:

\(BN\) // \(AC\left(gt\right)\)

\(AB\) // \(CN\left(cmt\right)\)

=> \(AB=CN\) (tính chất đoạn chắn).

Xét 2 \(\Delta\) vuông \(ABM\)\(CNM\) có:

\(\widehat{BAM}=\widehat{NCM}=90^0\)

\(AB=CN\left(cmt\right)\)

\(AM=CM\) (như ở trên)

=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).

Chúc bạn học tốt!

21 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = MC (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b) Xét t/g BMA và t/g DMC có:

MB = MD (gt)

BMA = DMC ( đối đỉnh)

MA = MC (gt)

Do đó, t/g BMA = t/g DMC (c.g.c)

=> ABM = CDM (2 góc tương ứng)

Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD

Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN

Có: BN // AC (gt)

AB // CN (cmt)

=> AB = CN ( tính chất đoạn chắn)

Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:

AB = CN (cmt)

AM = CM (gt)

Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: ta có: ABCD là hình bình hành

nên CD//AB

hay CD\(\perp\)AC

c: Xét tứ giác ABNC có 

AB//NC

NB//AC

Do đó: ABNC là hình bình hành

SUy ra: CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

22 tháng 12 2017

A B C D I

7 tháng 8 2019

Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

18 tháng 4 2017

A B C M D

a) Ta có : BC2 = AB2 + AC2

hay BC2 = 152 + 202

BC2 = 625

BC = 25

b) Xét \(\Delta ABM\)\(\Delta CDM\) :

AM = MC ( M là trung điểm của AC )

BM = MD (gt)

\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đinh )

=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{DCM}=90^0\)

Hay DC \(\perp AC\)

18 tháng 4 2017

Mơn nhìu!

25 tháng 11 2022

a: Xét tứ giác ABCD có

M là trug điểm chung của AC và BD

nên ABCD là hình bình hành

=>DC//AB và DC=AB

và AD=BC; AD//BC

b: CD//AB

AB vuông góc với AC

Do đo: CD vuông góc với CA

c:

Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hìnhbình hành

=>CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó;ΔABM=ΔCNM

2 tháng 3 2020

Tham khảo: Câu hỏi của Lee Linh