K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Trước tiên ta đi đìm điểm cố định của họ đường thẳng :

\(\Leftrightarrow y+2=mx-3x+m\Leftrightarrow y+2+3x=\left(x+1\right)m\)

Tọa độ điểm cố định thỏa mãm với mới m nên \(\hept{\begin{cases}x+1=0\\y+2+3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}\Leftrightarrow}A\left(-1;1\right)\)'Gọi IH là khoảng cách từ I đến (d) ; dễ thấy khoảng cách từ I đến (d) nên \(IH⊥d\)khoảng cách  lớn nhất khi và chỉ khi : IH = IA Tức H trùng với A  mà \(IH⊥d\Rightarrow IA⊥d\Rightarrow d\downarrow\uparrow ox\)và qua A(-1;1) => Đường thẳng có dạng y = 1 => B (0,1) thuộc (d) mà 

\(y=\left(m-3\right)x+m-2\)thay tọa độ B vào có : \(1=0\left(m-3\right)+m-2\Leftrightarrow m=3\)

NV
31 tháng 3 2019

\(y=\left(m-3\right)x+m-2\Leftrightarrow3x+y+2=m\left(x+1\right)\)

\(\Rightarrow d\) luôn đi qua điểm cố định \(A\left(-1;1\right)\)

Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow IH\perp d\Rightarrow IH\perp AH\Rightarrow\Delta IAH\) vuông tại H

\(\Rightarrow IH\le IA\Rightarrow IH_{max}=IA\) khi \(d\perp d'\) với d' là đường thẳng qua I, A

Do \(\left\{{}\begin{matrix}A\left(-1;1\right)\\I\left(-1;0\right)\end{matrix}\right.\) \(\Rightarrow\) phương trình đường thẳng \(d'\) qua I và A có dạng \(x=-1\)

\(\Rightarrow d'\perp Ox\Rightarrow d\perp Oy\) \(\Rightarrow m-3=0\Rightarrow m=3\)

31 tháng 3 2019

bạn tìm giúp mình tìm m để x1^2=4x2

NV
28 tháng 2 2019

\(y=mx-3x+m-2\Rightarrow y=m\left(x+1\right)-3x-2\)

\(\Rightarrow d\) luôn đi qua điểm cố định \(A\left(-1;1\right)\)

Gọi \(M\left(-1;0\right)\) và H là hình chiếu của M lên d \(\Rightarrow MH\) là khoảng cách từ M đến d

Trong tam giác \(AMH\) vuông tại H, do \(AM\) là cạnh huyền và MH là cạnh góc vuông \(\Rightarrow MH\le AM\)

\(\Rightarrow MH_{max}=AM\) khi H trùng M

\(\Rightarrow d\perp AM\)

\(x_A=x_M\Rightarrow AM//Oy\Rightarrow d\perp Oy\Rightarrow d//Ox\)

\(\Rightarrow m-3=0\Rightarrow m=3\)

NV
7 tháng 4 2019

Ý bạn là cho (P), tìm m để d cắt (P) tại 2 điểm phân biệt sao cho...?

Phương trình hoành độ giao điểm:

\(x^2-\left(m-3\right)x-m+2=0\)

\(a-b+c=1+m-3-m+2=0\)

\(\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left(-1\right)^2=4\left(m-2\right)\Rightarrow m=\frac{9}{4}\)

(Do \(x_1^2=4x_2\) nên \(x_2\) không bao giờ nhận giá trị âm nên \(x_1=-1\), ko cần xét thêm trường hợp \(x_2=-1\))

(d): \(y=\left(m^2+3\right)x+4\)

=>\(\left(m^2+3\right)x-y+4=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m^2+3\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m^2+3\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}\)

\(m^2+3>=3\forall m\)

=>\(\left(m^2+3\right)^2>=9\forall m\)

=>\(\left(m^2+3\right)^2+1>=10\forall m\)

=>\(\sqrt{\left(m^2+3\right)^2+1}>=\sqrt{10}\forall m\)

=>\(\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}< =\dfrac{4}{\sqrt{10}}\forall m\)

=>\(d\left(O;\left(d\right)\right)< =\dfrac{4}{\sqrt{10}}\forall m\)

Vậy: Khoảng cách từ O(0;0) đến (d) lớn nhất bằng \(\dfrac{4}{\sqrt{10}}=\dfrac{4\sqrt{10}}{10}=\dfrac{2\sqrt{10}}{5}\) khi m=0

 

25 tháng 1 2020

Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?

6 tháng 2 2020

hjhj , thank bạn nha , nhưng câu này mk hỏi năm 2016 , giờ mình học lớp 12 rồi !!!