Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=>(x - 3/4)(x-3/4 +x-1/2)=0
<=>(x-3/4)(2x-5/4)=0
<=>x-3/4=0 hoặc 2x-5/4=0
<=>x=3/4 hoặc x=5/8
Vậy tập nghiệm của phương trình trên là S={3/4;5/8}
b)<=>140x/35 - 7(4x-3)/35 - 10(x+3)/35=0
<=>140x-28x+21-10x-30=0
<=>102x=9
<=>x=3/34
Vậy tập nghiệm của phương trình trên là S={3/34}
Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3
\(\Leftrightarrow\left(x^4+x^3-2x^2\right)+\left(x^3+x^2-2x\right)+\left(6x^2+6x-12\right)=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)+x\left(x^2+x-2\right)+6\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^2+x^3-2x^2\right)+\left(x^3+x^2-2x\right)+\left(6x^2+6x-12\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=0\\x^2+x-2=0\end{matrix}\right.\)
* \(x^2+x+6=\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow x^2+x+6=0\) là vô lí
* \(x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)