K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy ...... 2

11 tháng 9 2016

Các số a,b,c bằng nhau

12 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c}{c}=\frac{\left(b+c-a\right)+\left(c+a-b\right)+\left(a+b-c\right)}{a+b+c}\)

                                                                         \(=\frac{a+b+c}{a+b+c}=1\)

12 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{\left(b+c+1\right)+\left(a+c+2\right)+\left(a+b-3\right)}{a+b+c}\)

                                                                         \(=\frac{2.\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

\(\Rightarrow a+b+c=\frac{1}{2}\)\(\Rightarrow\hept{\begin{cases}b+c=\frac{1}{2}-a\\a+c=\frac{1}{2}-b\\a+b=\frac{1}{2}-c\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-a+1}{a}=\frac{\frac{1}{2}-b+2}{b}=\frac{\frac{1}{2}-c-3}{c}=2\)

\(\Rightarrow\frac{\frac{3}{2}-a}{a}=\frac{\frac{5}{2}-b}{b}=\frac{\frac{-5}{2}-c}{c}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{3}{2}-a=2a\\\frac{5}{2}-b=2b\\\frac{-5}{2}-c=2c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=\frac{3}{2}\\3b=\frac{5}{2}\\3c=\frac{-5}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{5}{6}\\c=\frac{-5}{6}\end{cases}}\)

Vậy \(a=\frac{1}{2};b=\frac{5}{6};c=\frac{-5}{6}\)

23 tháng 7 2019

\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)

áp dụng tính chất DTSBN ta có

\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

\(+\frac{a}{-3}=>a=-6\)

\(+\frac{b}{4}=2=>b=8\)

\(+\frac{c}{6}=2=>c=12\)

Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số băng nhau:

 \(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)

30 tháng 6 2018

\(\frac{a^2\cdot c^2}{c^2\cdot b^2}=\frac{a}{b}\)

Ta thấy trong phân số thứ nhất thì cả tử và mẫu đều có c2 nên ta lược bỏ thì sẽ được :

\(\frac{a^2}{b^2}=\frac{a}{b}\)( cái này hợp lí )

Cho nên ..................= ............

Tk mh nhé bn , mơn nhìu !!!!

~ HOK TỐT ~

13 tháng 10 2019

Ta có : \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)

 \(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)

 \(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)

Nếu a + b + c + d = 0

=> a + b = - c - d

 b + c = - a - d

 c + d = - b - a

 d + a = - b - c

Khi đó \(P=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(b+a\right)}{b+a}=\frac{-\left(b+c\right)}{b+c}\)

                \(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Nếu a + b + c + d \(\ne\)0

\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}=\frac{1}{b+a}=\frac{1}{b+c}\)

\(\Rightarrow c+d=d+a=b+a=b+c\)

\(\Rightarrow a=b=c=d\)

Khi đó \(P=1+1+1+1=4\)

Vậy nếu a + b + c + d = 0 thì P = - 4

       nếu a + b + c + d \(\ne\)0 thì P = 4

Ta co a/b=c/d => a.b=c.c       Lai co: a.a + c.c/b.b + c.c=a.a + a.b/b.b + a.b=a.(a+b)/b.(a+b)=a/b

Vi : a.a+c.c/b.b+c.c=a/b  => b.b+c.c/a.a+c.c=b/a

=> b.b+c.c/z.z+c.c - 1 = b/a - 1

=>b.b+c.c - a.a-c.c/a.a+c.c=b-a/a

=>b.b-a.a/a.a+c.c=b-a/a

=> dpcm

22 tháng 12 2015

Đề đúng

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+c+b}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+c+b}\)

=> b+c+d = a+c+d = a+b+d = a+c+b

=> a=b=c=d

=> GTBT = 1+1+1+1 =4