Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)
Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất
Ta có: \(\left|x-2016\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)
Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)
Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016
Ta có :
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)
\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)
<=> |x - 2016| = 0
<=> x = 2016
\(P=|x-2015|+|x-2016|+|x-2017|\)
\(=\left(|x-2015|+|x-2017|\right)+|x-2016|\)
Ta có : \(|x-2015|+|x-2017|\ge|x-2015+2017-x|=2\)
Dấu '' = '' xảy ra khi : \(2015\le x\le2017\left(1\right)\)
Lại có : \(|x-2016|\ge0\)
Dấu '' = '' xảy ra khi \(x=2016\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(P_{min}=2\)
Dấu '' = '' xảy ra khi \(x=2016\).
gọi ý:
a,b biến đổi làm sao để:
a) áp dụng: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
b) áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
c) Đánh giá: \(\left|x-2015\right|^{2015}\ge0\)
\(\left(y-2016\right)^{2016}\ge0\)
=> \(C\ge1\)khi \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)
a ) A = | x - 5 | - | x - 7 |
Nhận xét :
| x - 5 | - | x - 7 | < | x - 5 - x + 7 |
=> A < | 2 |
=> A < 2
Dấu "=" xảy ra khi : ( x - 5 ) ( x - 7 ) > 0
TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)
=> \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)
=> x > 7
TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)
=> x < 5
Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7
b ) B = | 125 - x | + | x - 65 |
Ta có :
| 125 - x | + | x - 65 | > | 125 - x + x - 65 |
=> B > | 60 |
=> B > 60
Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0
TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)
=> 65 < x < 125
TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)
=> 125 < x < 65 ( vô lí )
Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125
c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1
Nhận xét :
| x - 2015 |2015 > 0 với mọi x
( y - 2016 )2016 > 0 với mọi x
=> | x - 2015 |2015 + ( y - 2016 )2016 > 0
=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1
=> C > 1
Dấu "=" xảy ra khi : x - 2015 = 0
và y - 2016 = 0
=> x = 2015
y = 2016
Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016
b: \(B=-\left|x-\dfrac{1}{10}\right|+9< =9\)
Dấu '=' xảy ra khi x=1/10
c: \(D=\left|x-2015\right|^{2015}+\left(y-2016\right)^{2016}+1>=1\)
Dấu '=' xảy ra khi (x,y)=(2015;2016)
Ta có : \(P\left(x\right)=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2016\right|+\left[\left|x-2015\right|+\left|2017-x\right|\right]\)
Vì : + ) \(\left|x-2016\right|\ge0\)
+ )\(\left|x-2015\right|+\left|2017-x\right|\ge\left|x-2015+2017-x\right|=2\)
Vậy \(Min_P=2\)
Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}x-2015\ge0\\x-2016=0\\x-2017\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge2015\\x=2016\\x\le2017\end{matrix}\right.\Rightarrow x=2016\)
P(x) =|x−2015|+|x−2016|+|x−2017|
=(|x−2015|+|x−2017|)+|x−2016|
Ta có: |x−2015|+|2017-x|\(\ge\)|x-2015+2017-x|=2
Dấu "=" xảy ra khi:
(x−2015).(2017-x)\(\ge\)0
\(\left\{{}\begin{matrix}x-2015\le0\\2017-x\le0\end{matrix}\right.=>\left\{{}\begin{matrix}x\le2015\\x\ge2017\end{matrix}\right.\)
=>\(2017\le x\le2015\)(VL)
\(\left\{{}\begin{matrix}x-2015\ge0\\2017-x\ge0\end{matrix}\right.=>\left\{{}\begin{matrix}x\ge2015\\x\le2017\end{matrix}\right.\)
=>\(2017\ge x\ge2015\)(TM) (1)
Mặt khác: |x−2016|\(\ge\)0
Dấu "=" xảy ra khi: x-2016=0
<=>x=2016 (2)
Từ (1) và (2) ,ta có:
P(x) \(\ge2+0=2\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2017\ge x\ge2015\\x=2016\end{matrix}\right.=>x=2016}\)
vậy min P(x)=2 khi x=2016
\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)
\(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)
\(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+ \left|x-2016\right|\)
Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)
Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0
<=> x = 2016
Vậy Pmin = 2 khi x = 2016
mk ko viết lại đề
P= |x-2015|+|x-2016|+|2017-x|
\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\)
=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)
Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)
dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)
Vậy GTNN của P=2 \(\Leftrightarrow2015\le x\le2017\)