K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

GTNN cua P=2 khi x=2016

30 tháng 3 2019

\(P=|x-2015|+|x-2016|+|x-2017|\)

   \(=\left(|x-2015|+|x-2017|\right)+|x-2016|\)

Ta có : \(|x-2015|+|x-2017|\ge|x-2015+2017-x|=2\)

Dấu '' = '' xảy ra khi : \(2015\le x\le2017\left(1\right)\)

Lại có : \(|x-2016|\ge0\)

Dấu '' = '' xảy ra khi \(x=2016\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có \(P_{min}=2\)

Dấu '' = '' xảy ra khi \(x=2016\).

30 tháng 3 2018

\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

    \(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)

     \(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)

      \(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)

       \(=2+ \left|x-2016\right|\)

Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)

Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0

                                                              <=> x = 2016

Vậy Pmin = 2 khi x = 2016

30 tháng 3 2018

mk ko viết lại đề

P= |x-2015|+|x-2016|+|2017-x|

\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\) 

=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)

Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)

dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)

Vậy GTNN của P=2  \(\Leftrightarrow2015\le x\le2017\)

27 tháng 2 2020

Sao chép

4 tháng 3 2019

\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)

Vì \(x=2017\)

\(\Leftrightarrow x+1=2018\)

Thay vào P(x) ta được :

\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)

\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)

\(P\left(x\right)=-x^{2018}+1\)

\(P\left(x\right)=-2017^{2018}+1\)

12 tháng 2 2018

bn lập bảng xét dấu rồi xét 4 khoảng nhé!!

11 tháng 3 2019

Ta có: \( \left|x-2015\right|=\left|2015-x\right|\)

Ta lại có: \(\left|2015-x\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|=2\)

        \(\Rightarrow P\ge\left|2016-x\right|+2\)

    Vì \(\left|2016-x\right|\ge0\)\(\Rightarrow\left|2016-x\right|+2\ge2\)

                     \(\Rightarrow P\ge2\)

       Khi đó: \(\left|2016-x\right|=0\)\(\Rightarrow2016-x=0\)\(\Rightarrow x=2016\)

             Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(x=2016\)

22 tháng 5 2021

Buề