Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình có một phương pháp giải khác hay! Bạn tham khảo nhé!
\(D=\frac{x-7}{x-15}=\frac{x-15+8}{x-15}=1+\frac{8}{x-15}\)
Do vậy D lớn nhất khi \(\frac{8}{x-15}\) lớn nhất.
Mà \(\frac{8}{x-15}\) lớn nhất khi x - 15 nhỏ nhất ( x-15 > 0 vì nếu x-15 < 0 thì \(\frac{8}{x-15}\) có giá trị âm,nếu x - 15 = 0 thì \(\frac{8}{x-15}\) vô nghĩa)
_ Với x - 15 >0 thì \(x-15\ge1\Rightarrow\frac{8}{x-15}\le8\)
Do đó \(D=1+\frac{8}{x-15}\le1+8=9\)
Dấu "=" xảy ra \(\Leftrightarrow x-15=1\Leftrightarrow x=16\)
Vậy \(D_{max}=9\Leftrightarrow x=16\)
Vì Q có GTLN => \(\dfrac{27-2x}{12-x}\)có GTLN
Ta có : \(\dfrac{27-2x}{12-x}\)= (*)\(\dfrac{24-2x+3}{12-x}=\dfrac{24-2x}{12-x}+\dfrac{3}{12-x}=2+\dfrac{3}{12-x}\)
=> Để Q có GTLN => \(\dfrac{3}{12-x}\)có GTLN
=>12-x có GTNN (12-x thuộc N khác 0)
=>12-x = 1
<=>x = 12-1=11
Thay x vào (*), ta có:
Q=\(\dfrac{27-2x}{12-x}=\dfrac{27-2.11}{12-11}=\dfrac{27-22}{1}=5\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
mk cũng đang bí câu gần giống như này nè ,